Biblio
Hypervisors are the main components for managing virtual machines on cloud computing systems. Thus, the security of hypervisors is very crucial as the whole system could be compromised when just one vulnerability is exploited. In this paper, we assess the vulnerabilities of widely used hypervisors including VMware ESXi, Citrix XenServer and KVM using the NIST 800-115 security testing framework. We perform real experiments to assess the vulnerabilities of those hypervisors using security testing tools. The results are evaluated using weakness information from CWE, and using vulnerability information from CVE. We also compute the severity scores using CVSS information. All vulnerabilities found of three hypervisors will be compared in terms of weaknesses, severity scores and impact. The experimental results showed that ESXi and XenServer have common weaknesses and vulnerabilities whereas KVM has fewer vulnerabilities. In addition, we discover a new vulnerability called HTTP response splitting on ESXi Web interface.
The explosive growth of IT infrastructures, cloud systems, and Internet of Things (IoT) have resulted in complex systems that are extremely difficult to secure and protect against cyberattacks which are growing exponentially in complexity and in number. Overcoming the cybersecurity challenges is even more complicated due to the lack of training and widely available cybersecurity environments to experiment with and evaluate new cybersecurity methods. The goal of our research is to address these challenges by exploiting cloud services. In this paper, we present the design, analysis, and evaluation of a cloud service that we refer to as Cybersecurity Lab as a Service (CLaaS) which offers virtual cybersecurity experiments that can be accessed from anywhere and from any device (desktop, laptop, tablet, smart mobile device, etc.) with Internet connectivity. In CLaaS, we exploit cloud computing systems and virtualization technologies to provide virtual cybersecurity experiments and hands-on experiences on how vulnerabilities are exploited to launch cyberattacks, how they can be removed, and how cyber resources and services can be hardened or better protected. We also present our experimental results and evaluation of CLaaS virtual cybersecurity experiments that have been used by graduate students taking our cybersecurity class as well as by high school students participating in GenCyber camps.