Biblio
Edge and Fog Computing will be increasingly pervasive in the years to come due to the benefits they bring in many specific use-case scenarios over traditional Cloud Computing. Nevertheless, the security concerns Fog and Edge Computing bring in have not been fully considered and addressed so far, especially when considering the underlying technologies (e.g. virtualization) instrumental to reap the benefits of the adoption of the Edge paradigm. In particular, these virtualization technologies (i.e. Containers, Real Time Operating Systems, and Unikernels), are far from being adequately resilient and secure. Aiming at shedding some light on current technology limitations, and providing hints on future research security issues and technology development, in this paper we introduce the main technologies supporting the Edge paradigm, survey existing issues, introduce relevant scenarios, and discusses benefits and caveats of the different existing solutions in the above introduced scenarios. Finally, we provide a discussion on the current security issues in the introduced context, and strive to outline future research directions in both security and technology development in a number of Edge/Fog scenarios.
Cloud Computing represents one of the most significant shifts in information technology and it enables to provide cloud-based security service such as Security-as-a-service (SECaaS). Improving of the cloud computing technologies, the traditional SIEM paradigm is able to shift to cloud-based security services. In this paper, we propose the SIEM architecture that can be deployed to the SECaaS platform which we have been developing for analyzing and recognizing intelligent cyber-threat based on virtualization technologies.
The explosive growth of IT infrastructures, cloud systems, and Internet of Things (IoT) have resulted in complex systems that are extremely difficult to secure and protect against cyberattacks which are growing exponentially in complexity and in number. Overcoming the cybersecurity challenges is even more complicated due to the lack of training and widely available cybersecurity environments to experiment with and evaluate new cybersecurity methods. The goal of our research is to address these challenges by exploiting cloud services. In this paper, we present the design, analysis, and evaluation of a cloud service that we refer to as Cybersecurity Lab as a Service (CLaaS) which offers virtual cybersecurity experiments that can be accessed from anywhere and from any device (desktop, laptop, tablet, smart mobile device, etc.) with Internet connectivity. In CLaaS, we exploit cloud computing systems and virtualization technologies to provide virtual cybersecurity experiments and hands-on experiences on how vulnerabilities are exploited to launch cyberattacks, how they can be removed, and how cyber resources and services can be hardened or better protected. We also present our experimental results and evaluation of CLaaS virtual cybersecurity experiments that have been used by graduate students taking our cybersecurity class as well as by high school students participating in GenCyber camps.