Biblio
The complexity and scale of modern software programs often lead to overlooked programming errors and security vulnerabilities. Developers often rely on automatic tools, like static analysis tools, to look for bugs and vulnerabilities. Static analysis tools are widely used because they can understand nontrivial program behaviors, scale to millions of lines of code, and detect subtle bugs. However, they are known to generate an excess of false alarms which hinder their utilization as it is counterproductive for developers to go through a long list of reported issues, only to find a few true positives. One of the ways proposed to suppress false positives is to use machine learning to identify them. However, training machine learning models requires good quality labeled datasets. For this purpose, we developed D2A [3], a differential analysis based approach that uses the commit history of a code repository to create a labeled dataset of Infer [2] static analysis output.
A beneficial botnet, which tries to cope with technology of malicious botnets such as peer to peer (P2P) networking and Domain Generation Algorithm (DGA), is discussed. In order to cope with such botnets' technology, we are developing a beneficial botnet as an anti-bot measure, using our previous beneficial bot. The beneficial botnet is a group of beneficial bots. The peer to peer (P2P) communication of malicious botnet is hard to detect by a single Intrusion Detection System (IDS). Our beneficial botnet has the ability to detect P2P communication, using collaboration of our beneficial bots. The beneficial bot could detect communication of the pseudo botnet which mimics malicious botnet communication. Our beneficial botnet may also detect communication using DGA. Furthermore, our beneficial botnet has ability to cope with new technology of new botnets, because our beneficial botnet has the ability to evolve, as same as malicious botnets.
Botnets are emerging as the most serious cyber threat among different forms of malware. Today botnets have been facilitating to launch many cybercriminal activities like DDoS, click fraud, phishing attacks etc. The main purpose of botnet is to perform massive financial threat. Many large organizations, banks and social networks became the target of bot masters. Botnets can also be leased to motivate the cybercriminal activities. Recently several researches and many efforts have been carried out to detect bot, C&C channels and bot masters. Ultimately bot maters also strengthen their activities through sophisticated techniques. Many botnet detection techniques are based on payload analysis. Most of these techniques are inefficient for encrypted C&C channels. In this paper we explore different categories of botnet and propose a detection methodology to classify bot host from the normal host by analyzing traffic flow characteristics based on time intervals instead of payload inspection. Due to that it is possible to detect botnet activity even encrypted C&C channels are used.