Biblio
Communication networks can be the targets of organized and distributed attacks such as flooding-type DDOS attack in which malicious users aim to cripple a network server or a network domain. For the attack to have a major effect on the network, malicious users must act in a coordinated and time correlated manner. For instance, the members of the flooding attack increase their message transmission rates rapidly but also synchronously. Even though detection and prevention of the flooding attacks are well studied at network and transport layers, the emergence and wide deployment of new systems such as VoIP (Voice over IP) have turned flooding attacks at the session layer into a new defense challenge. In this study a structured sparsity based group anomaly detection system is proposed that not only can detect synchronized attacks, but also identify the malicious groups from normal users by jointly estimating their members, structure, starting and end points. Although we mainly focus on security on SIP (Session Initiation Protocol) servers/proxies which are widely used for signaling in VoIP systems, the proposed scheme can be easily adapted for any type of communication network system at any layer.
Flooding attacks are well-known security threats that can lead to a denial of service (DoS) in computer networks. These attacks consist of an excessive traffic generation, by which an attacker aim to disrupt or interrupt some services in the network. The impact of flooding attacks is not just about some nodes, it can be also the whole network. Many routing protocols are vulnerable to these attacks, especially those using reactive mechanism of route discovery, like AODV. In this paper, we propose a statistical approach to defense against RREQ flooding attacks in MANETs. Our detection mechanism can be applied on AODV-based ad hoc networks. Simulation results prove that these attacks can be detected with a low rate of false alerts.