Biblio
Emerging computing relies heavily on secure backend storage for the massive size of big data originating from the Internet of Things (IoT) smart devices to the Cloud-hosted web applications. Structured Query Language (SQL) Injection Attack (SQLIA) remains an intruder's exploit of choice to pilfer confidential data from the back-end database with damaging ramifications. The existing approaches were all before the new emerging computing in the context of the Internet big data mining and as such will lack the ability to cope with new signatures concealed in a large volume of web requests over time. Also, these existing approaches were strings lookup approaches aimed at on-premise application domain boundary, not applicable to roaming Cloud-hosted services' edge Software-Defined Network (SDN) to application endpoints with large web request hits. Using a Machine Learning (ML) approach provides scalable big data mining for SQLIA detection and prevention. Unfortunately, the absence of corpus to train a classifier is an issue well known in SQLIA research in applying Artificial Intelligence (AI) techniques. This paper presents an application context pattern-driven corpus to train a supervised learning model. The model is trained with ML algorithms of Two-Class Support Vector Machine (TC SVM) and Two-Class Logistic Regression (TC LR) implemented on Microsoft Azure Machine Learning (MAML) studio to mitigate SQLIA. This scheme presented here, then forms the subject of the empirical evaluation in Receiver Operating Characteristic (ROC) curve.
Open Science Big Data is emerging as an important area of research and software development. Although there are several high quality frameworks for Big Data, additional capabilities are needed for Open Science Big Data. These include data provenance, citable reusable data, data sources providing links to research literature, relationships to other data and theories, transparent analysis/reproducibility, data privacy, new optimizations/advanced algorithms, data curation, data storage and transfer. An important part of science is explanation of results, ideally leading to theory formation. In this paper, we examine means for supporting the use of theory in big data analytics as well as using big data to assist in theory formation. One approach is to fit data in a way that is compatible with some theory, existing or new. Functional Data Analysis allows precise fitting of data as well as penalties for lack of smoothness or even departure from theoretical expectations. This paper discusses principal differential analysis and related techniques for fitting data where, for example, a time-based process is governed by an ordinary differential equation. Automation in theory formation is also considered. Case studies in the fields of computational economics and finance are considered.
Enormous amount of educational data has been accumulated through Massive Open Online Courses (MOOCs), as well as commercial and non-commercial learning platforms. This is in addition to the educational data released by US government since 2012 to facilitate disruption in education by making data freely available. The high volume, variety and velocity of collected data necessitate use of big data tools and storage systems such as distributed databases for storage and Apache Spark for analysis. This tutorial will introduce researchers and faculty to real-world applications involving data mining and predictive analytics in learning sciences. In addition, the tutorial will introduce statistics required to validate and accurately report results. Topics will cover how big data is being used to transform education. Specifically, we will demonstrate how exploratory data analysis, data mining, predictive analytics, machine learning, and visualization techniques are being applied to educational big data to improve learning and scale insights driven from millions of student's records. The tutorial will be held over a half day and will be hands on with pre-posted material. Due to the interdisciplinary nature of work, the tutorial appeals to researchers from a wide range of backgrounds including big data, predictive analytics, learning sciences, educational data mining, and in general, those interested in how big data analytics can transform learning. As a prerequisite, attendees are required to have familiarity with at least one programming language.