Visible to the public Biblio

Filters: Keyword is deterministic  [Clear All Filters]
2020-09-11
Al-Ghushami, Abdullah, Karie, NIckson, Kebande, Victor.  2019.  Detecting Centralized Architecture-Based Botnets using Travelling Salesperson Non-Deterministic Polynomial-Hard problem-TSP-NP Technique. 2019 IEEE Conference on Application, Information and Network Security (AINS). :77—81.
The threats posed by botnets in the cyber-space continues to grow each day and it has become very hard to detect or infiltrate bots given that the botnet developers each day keep changing the propagation and attack techniques. Currently, most of these attacks have been centered on stealing computing energy, theft of personal information and Distributed Denial of Service (DDoS attacks). In this paper, the authors propose a novel technique that uses the Non-Deterministic Polynomial-Time Hardness (NP-Hard Problem) based on the Traveling Salesperson Person (TSP) that depicts that a given bot, bj, is able to visit each host on a network environment, NE, and then it returns to the botmaster in form of instruction(command) through optimal minimization of the hosts that are or may be attacked. Given that bj represents a piece of malicious code and based on TSP-NP Hard Problem which forms part of combinatorial optimization, the authors present an effective approach for the detection of the botnet. It is worth noting that the concentration of this study is basically on the centralized botnet architecture. This holistic approach shows that botnet detection accuracy can be increased with a degree of certainty and potentially decrease the chances of false positives. Nevertheless, a discussion on the possible applicability and implementation has also been given in this paper.
2017-03-07
He, Jian, Veltri, Enzo, Santoro, Donatello, Li, Guoliang, Mecca, Giansalvatore, Papotti, Paolo, Tang, Nan.  2016.  Interactive and Deterministic Data Cleaning. Proceedings of the 2016 International Conference on Management of Data. :893–907.

We present Falcon, an interactive, deterministic, and declarative data cleaning system, which uses SQL update queries as the language to repair data. Falcon does not rely on the existence of a set of pre-defined data quality rules. On the contrary, it encourages users to explore the data, identify possible problems, and make updates to fix them. Bootstrapped by one user update, Falcon guesses a set of possible sql update queries that can be used to repair the data. The main technical challenge addressed in this paper consists in finding a set of sql update queries that is minimal in size and at the same time fixes the largest number of errors in the data. We formalize this problem as a search in a lattice-shaped space. To guarantee that the chosen updates are semantically correct, Falcon navigates the lattice by interacting with users to gradually validate the set of sql update queries. Besides using traditional one-hop based traverse algorithms (e.g., BFS or DFS), we describe novel multi-hop search algorithms such that Falcon can dive over the lattice and conduct the search efficiently. Our novel search strategy is coupled with a number of optimization techniques to further prune the search space and efficiently maintain the lattice. We have conducted extensive experiments using both real-world and synthetic datasets to show that Falcon can effectively communicate with users in data repairing.