Biblio
As digital microfluidic biochips (DMFBs) make the transition to the marketplace for commercial exploitation, security and intellectual property (IP) protection are emerging as important design considerations. Recent studies have shown that DMFBs are vulnerable to reverse engineering aimed at stealing biomolecular protocols (IP theft). The IP piracy of proprietary protocols may lead to significant losses for pharmaceutical and biotech companies. The micro-electrode-dot-array (MEDA) is a next-generation DMFB platform that supports real-time sensing of droplets and has the added advantage of important security protections. However, real-time sensing offers opportunities to an attacker to steal the biochemical IP. We show that the daisychaining of microelectrodes and the use of one-time-programmability in MEDA biochips provides effective bitstream scrambling of biochemical protocols. To examine the strength of this solution, we develop a SAT attack that can unscramble the bitstreams through repeated observations of bioassays executed on the MEDA platform. Based on insights gained from the SAT attack, we propose an advanced defense against IP theft. Simulation results using real-life biomolecular protocols confirm that while the SAT attack is effective for simple instances, our advanced defense can thwart it for realistic MEDA biochips and real-life protocols.
We present in this paper a security analysis of electronic devices which considers the lifecycle properties of embedded systems. We first define a generic model of electronic devices lifecycle showing the complex interactions between the numerous assets and the actors. The method is illustrated through a case study: a connected insulin pump. The lifecycle induced vulnerabilities are analyzed using the EBIOS methodology. An analysis of associated countermeasures points out the lack of consideration of the life cycle in order to provide an acceptable security level of each assets of the device.
The design of low power chip for IoT applications is very challenge, especially for self-powered wireless sensors. Achieving ultra low power requires both system level optimization and circuit level innovation. This paper presents a continuous-in-time and discrete-in-amplitude (CTDA) system architecture that facilitates adaptive data rate sampling and clockless implementation for a wireless sensor SoC.