Visible to the public Biblio

Filters: Keyword is Nonhomogeneous media  [Clear All Filters]
2023-06-23
Vogel, Michael, Schuster, Franka, Kopp, Fabian Malte, König, Hartmut.  2022.  Data Volume Reduction for Deep Packet Inspection by Multi-layer Application Determination. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :44–49.
Attack detection in enterprise networks is increasingly faced with large data volumes, in part high data bursts, and heavily fluctuating data flows that often cause arbitrary discarding of data packets in overload situations which can be used by attackers to hide attack activities. Attack detection systems usually configure a comprehensive set of signatures for known vulnerabilities in different operating systems, protocols, and applications. Many of these signatures, however, are not relevant in each context, since certain vulnerabilities have already been eliminated, or the vulnerable applications or operating system versions, respectively, are not installed on the involved systems. In this paper, we present an approach for clustering data flows to assign them to dedicated analysis units that contain only signature sets relevant for the analysis of these flows. We discuss the performance of this clustering and show how it can be used in practice to improve the efficiency of an analysis pipeline.
2023-03-17
Cui, Yang, Ma, Yikai, Zhang, Yudong, Lin, Xi, Zhang, Siwei, Si, Tianbin, Zhang, Changhai.  2022.  Effect of multilayer structure on energy storage characteristics of PVDF ferroelectric polymer. 2022 4th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP). :582–586.
Dielectric capacitors have attracted attention as energy storage devices that can achieve rapid charge and discharge. But the key to restricting its development is the low energy storage density of dielectric materials. Polyvinylidene fluoride (PVDF), as a polymer with high dielectric properties, is expected to improve the energy storage density of dielectric materials. In this work, the multilayer structure of PVDF ferroelectric polymer is designed, and the influence of the number of layers on the maximum polarization, remanent polarization, applied electric field and energy storage density of the dielectric material is studied. The final obtained double-layer PVDF obtained a discharge energy storage density of 10.6 J/cm3 and an efficiency of 49.1% at an electric field of 410 kV/mm; the three-layer PVDF obtained a discharge energy storage density of 11.0 J/cm3 and an efficiency of 37.2% at an electric field of 440 kV/mm.
2023-02-24
Ding, Haihao, Zhao, Qingsong.  2022.  Multilayer Network Modeling and Stability Analysis of Internet of Battlefield Things. 2022 IEEE International Systems Conference (SysCon). :1—6.
Intelligent service network under the paradigm of the Internet of Things (IoT) uses sensor and network communication technology to realize the interconnection of everything and real-time communication between devices. Under the background of combat, all kinds of sensor devices and equipment units need to be highly networked to realize interconnection and information sharing, which makes the Internet of Things technology hopeful to be applied in the battlefield to interconnect these entities to form the Internet of Battlefield Things (IoBT). This paper analyzes the related concepts of IoBT, and constructs the IoBT multilayer dependency network model according to the typical characteristics and topology of IoBT, then constructs the weighted super-adjacency matrix according to the coupling weights within and between different layers, and the stability model of IoBT is analyzed and derived. Finally, an example of IoBT network is given to provide a reference for analyzing the stability factors of IoBT network.
2022-12-01
Thapaliya, Bipana, Mursi, Khalid T., Zhuang, Yu.  2021.  Machine Learning-based Vulnerability Study of Interpose PUFs as Security Primitives for IoT Networks. 2021 IEEE International Conference on Networking, Architecture and Storage (NAS). :1–7.
Security is of importance for communication networks, and many network nodes, like sensors and IoT devices, are resource-constrained. Physical Unclonable Functions (PUFs) leverage physical variations of the integrated circuits to produce responses unique to individual circuits and have the potential for delivering security for low-cost networks. But before a PUF can be adopted for security applications, all security vulnerabilities must be discovered. Recently, a new PUF known as Interpose PUF (IPUF) was proposed, which was tested to be secure against reliability-based modeling attacks and machine learning attacks when the attacked IPUF is of small size. A recent study showed IPUFs succumbed to a divide-and-conquer attack, and the attack method requires the position of the interpose bit known to the attacker, a condition that can be easily obfuscated by using a random interpose position. Thus, large IPUFs may still remain secure against all known modeling attacks if the interpose position is unknown to attackers. In this paper, we present a new modeling attack method of IPUFs using multilayer neural networks, and the attack method requires no knowledge of the interpose position. Our attack was tested on simulated IPUFs and silicon IPUFs implemented on FPGAs, and the results showed that many IPUFs which were resilient against existing attacks cannot withstand our new attack method, revealing a new vulnerability of IPUFs by re-defining the boundary between secure and insecure regions in the IPUF parameter space.
2022-09-09
Mostafa, Abdelrahman Ibrahim, Rashed, Abdelrahman Mostafa, Alsherif, Yasmin Ashraf, Enien, Yomna Nagah, Kaoud, Menatalla, Mohib, Ahmed.  2021.  Supply Chain Risk Assessment Using Fuzzy Logic. 2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES). :246—251.
Business's strength arises from the strength of its supply chain. Therefore, a proper supply chain management is vital for business continuity. One of the most challenging parts of SCM is the contract negotiation, and one main aspect of the negotiation is to know the risk associated with each range of quantity agreed on. Currently Managers assess the quantity to be supplied based on a binary way of either full or 0 supply, This paper aims to assess the corresponding quantities risks of the suppliers on a multilayer basis. The proposed approach uses fuzzy logic as an artificial intelligence tool that would develop the verbal terms of managers into numbers to be dealt with. A company that produces fresh frozen vegetables and fruits in Egypt who faces the problem of getting the required quantities from the suppliers with a fulfilment rate of 33% was chosen to apply the proposed model. The model allowed the managers to have full view of risk in their supply chain effectively and decide their needed capacity as well as the negotiation terms with both suppliers and customers. Future work should be the use of more data in the fuzzy database and implement the proposed methodology in an another industry.
2022-07-14
Almousa, May, Basavaraju, Sai, Anwar, Mohd.  2021.  API-Based Ransomware Detection Using Machine Learning-Based Threat Detection Models. 2021 18th International Conference on Privacy, Security and Trust (PST). :1–7.
Ransomware is a major malware attack experienced by large corporations and healthcare services. Ransomware employs the idea of cryptovirology, which uses cryptography to design malware. The goal of ransomware is to extort ransom by threatening the victim with the destruction of their data. Ransomware typically involves a 3-step process: analyzing the victim’s network traffic, identifying a vulnerability, and then exploiting it. Thus, the detection of ransomware has become an important undertaking that involves various sophisticated solutions for improving security. To further enhance ransomware detection capabilities, this paper focuses on an Application Programming Interface (API)-based ransomware detection approach in combination with machine learning (ML) techniques. The focus of this research is (i) understanding the life cycle of ransomware on the Windows platform, (ii) dynamic analysis of ransomware samples to extract various features of malicious code patterns, and (iii) developing and validating machine learning-based ransomware detection models on different ransomware and benign samples. Data were collected from publicly available repositories and subjected to sandbox analysis for sampling. The sampled datasets were applied to build machine learning models. The grid search hyperparameter optimization algorithm was employed to obtain the best fit model; the results were cross-validated with the testing datasets. This analysis yielded a high ransomware detection accuracy of 99.18% for Windows-based platforms and shows the potential for achieving high-accuracy ransomware detection capabilities when using a combination of API calls and an ML model. This approach can be further utilized with existing multilayer security solutions to protect critical data from ransomware attacks.
2022-06-09
Papakostas, Dimitrios, Kasidakis, Theodoros, Fragkou, Evangelia, Katsaros, Dimitrios.  2021.  Backbones for Internet of Battlefield Things. 2021 16th Annual Conference on Wireless On-demand Network Systems and Services Conference (WONS). :1–8.
The Internet of Battlefield Things is a relatively new cyberphysical system and even though it shares a lot of concepts from the Internet of Things and wireless ad hoc networking in general, a lot of research is required to address its scale and peculiarities. In this article we examine a fundamental problem pertaining to the routing/dissemination of information, namely the construction of a backbone. We model an IoBT ad hoc network as a multilayer network and employ the concept of domination for multilayer networks which is a complete departure from the volume of earlier works, in order to select sets of nodes that will support the routing of information. Even though there is huge literature on similar topics during the past many years, the problem in military (IoBT) networks is quite different since these wireless networks are multilayer networks and treating them as a single (flat) network or treating each layer in isolation and calculating dominating set produces submoptimal or bad solutions; thus all the past literature which deals with single layer (flat) networks is in principle inappropriate. We design a new, distributed algorithm for calculating connected dominating sets which produces dominating sets of small cardinality. We evaluate the proposed algorithm on synthetic topologies, and compare it against the only two existing competitors. The proposed algorithm establishes itself as the clear winner in all experiments.
2022-04-25
Jaiswal, Gaurav.  2021.  Hybrid Recurrent Deep Learning Model for DeepFake Video Detection. 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). :1–5.
Nowadays deepfake videos are concern with social ethics, privacy and security. Deepfake videos are synthetically generated videos that are generated by modifying the facial features and audio features to impose one person’s facial data and audio to other videos. These videos can be used for defaming and fraud. So, counter these types of manipulations and threats, detection of deepfake video is needed. This paper proposes multilayer hybrid recurrent deep learning models for deepfake video detection. Proposed models exploit the noise-based temporal facial convolutional features and temporal learning of hybrid recurrent deep learning models. Experiment results of these models demonstrate its performance over stacked recurrent deep learning models.
2022-04-01
Williams, Adam D., Adams, Thomas, Wingo, Jamie, Birch, Gabriel C., Caskey, Susan A., Fleming, Elizabeth S., Gunda, Thushara.  2021.  Resilience-Based Performance Measures for Next-Generation Systems Security Engineering. 2021 International Carnahan Conference on Security Technology (ICCST). :1—5.
Performance measures commonly used in systems security engineering tend to be static, linear, and have limited utility in addressing challenges to security performance from increasingly complex risk environments, adversary innovation, and disruptive technologies. Leveraging key concepts from resilience science offers an opportunity to advance next-generation systems security engineering to better describe the complexities, dynamism, and nonlinearity observed in security performance—particularly in response to these challenges. This article introduces a multilayer network model and modified Continuous Time Markov Chain model that explicitly captures interdependencies in systems security engineering. The results and insights from a multilayer network model of security for a hypothetical nuclear power plant introduce how network-based metrics can incorporate resilience concepts into performance metrics for next generation systems security engineering.
2021-11-29
WANG, Yuan-yuan, LI, Cui-ping, MA, Jun, Yan, Xiao-peng, QIAN, Li-rong, Yang, Bao-he, TIAN, Ya-hui, LI, Hong-lang.  2021.  Theorectical Optimazation of Surface Acoustic Waves Resonator Based on 30° Y-Cut Linbo3/SIO2/SI Multilayered Structure. 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). :555–559.
Surface acoustic wave devices based on LiNbO3/interlayer/substrate layered structure have attracted great attention due to the high electromechanical coupling coefficient (K2) of LiNbO3 and the energy confinement effect of the layered structure. In this study, 30° YX-LiNbO3 (LN)/SiO2/Si multilayered structure, which can excited shear-horizontal surface acoustic wave (SH-SAW) with high K2, was proposed. The optimized orientation of LiNbO3 was verified by the effective permittivity method based on the stiffness matrix. The phase velocity, K2 value, and temperature coefficient of frequency (TCF) of the SH-SAW were calculated as a function of the LiNbO3 thickness at different thicknesses of the SiO2 in 30° YX-LiNbO3/SiO2/Si multilayer structure by finite element method (FEM). The results show that the optimized LiNbO3 thickness is 0.1 and the optimized SiO2 thickness is 0.2λ. The optimized Al electrode thickness and metallization ratio are 0.07 and 0.4, respectively. The K2 of the SH-SAW is 29.89%, the corresponding phase velocity is 3624.00 m/s and TCF is about 10 ppm/°C with the optimized IDT/30° YX-LiNbO3/SiO2/Si layered structure.
2021-08-11
Pan, Xiaoqin, Tang, Shaofei, Zhu, Zuqing.  2020.  Privacy-Preserving Multilayer In-Band Network Telemetry and Data Analytics. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :142—147.
As a new paradigm for the monitoring and troubleshooting of backbone networks, the multilayer in-band network telemetry (ML-INT) with deep learning (DL) based data analytics (DA) has recently been proven to be effective on realtime visualization and fine-grained monitoring. However, the existing studies on ML-INT&DA systems have overlooked the privacy and security issues, i.e., a malicious party can apply tapping in the data reporting channels between the data and control planes to illegally obtain plaintext ML-INT data in them. In this paper, we discuss a privacy-preserving DL-based ML-INT&DA system for realizing AI-assisted network automation in backbone networks in the form of IP-over-Optical. We first show a lightweight encryption scheme based on integer vector homomorphic encryption (IVHE), which is used to encrypt plaintext ML-INT data. Then, we architect a DL model for anomaly detection, which can directly analyze the ciphertext ML-INT data. Finally, we present the implementation and experimental demonstrations of the proposed system. The privacy-preserving DL-based ML-INT&DA system is realized in a real IP over elastic optical network (IP-over-EON) testbed, and the experimental results verify the feasibility and effectiveness of our proposal.
2020-11-30
Anyfantis, D. I., Sarigiannidou, E., Rapenne, L., Stamatelatos, A., Ntemogiannis, D., Kapaklis, V., Poulopoulos, P..  2019.  Unexpected Development of Perpendicular Magnetic Anisotropy in Ni/NiO Multilayers After Mild Thermal Annealing. IEEE Magnetics Letters. 10:1–5.
We report on the significant enhancement of perpendicular magnetic anisotropy of Ni/NiO multilayers after mild annealing up to 90 min at 250 °C. Transmission electron microscopy shows that after annealing, a partial crystallization of the initially amorphous NiO layers occurs. This turns out to be the source of the anisotropy enhancement. Magnetic measurements reveal that even multilayers with Ni layers as thick as 7 nm, which in the as-deposited state showed inplane anisotropy with square hysteresis loops, show reduced in-plane remanence after thermal treatment. Hysteresis loops recorded with the field in the normal-to-film-plane direction provide evidence for perpendicular magnetic anisotropy with up and down magnetic domains at remanence. A plot of effective uniaxial magnetic anisotropy constant times individual Ni layer thickness as a function of individual Ni layer thickness shows a large change in the slope of the data attributed to a drastic change of volume anisotropy. Surface anisotropy showed a small decrease because of some layer roughening introduced by annealing.
2020-07-30
Shayan, Mohammed, Bhattacharjee, Sukanta, Song, Yong-Ak, Chakrabarty, Krishnendu, Karri, Ramesh.  2019.  Can Multi-Layer Microfluidic Design Methods Aid Bio-Intellectual Property Protection? 2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS). :151—154.
Researchers develop bioassays by rigorously experimenting in the lab. This involves significant fiscal and skilled person-hour investment. A competitor can reverse engineer a bioassay implementation by imaging or taking a video of a biochip when in use. Thus, there is a need to protect the intellectual property (IP) rights of the bioassay developer. We introduce a novel 3D multilayer-based obfuscation to protect a biochip against reverse engineering.
2019-10-14
Tymburibá, M., Sousa, H., Pereira, F..  2019.  Multilayer ROP Protection Via Microarchitectural Units Available in Commodity Hardware. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :315–327.

This paper presents a multilayer protection approach to guard programs against Return-Oriented Programming (ROP) attacks. Upper layers validate most of a program's control flow at a low computational cost; thus, not compromising runtime. Lower layers provide strong enforcement guarantees to handle more suspicious flows; thus, enhancing security. Our multilayer system combines techniques already described in the literature with verifications that we introduce in this paper. We argue that modern versions of x86 processors already provide the microarchitectural units necessary to implement our technique. We demonstrate the effectiveness of our multilayer protection on a extensive suite of benchmarks, which includes: SPEC CPU2006; the three most popular web browsers; 209 benchmarks distributed with LLVM and four well-known systems shown to be vulnerable to ROP exploits. Our experiments indicate that we can protect programs with almost no overhead in practice, allying the good performance of lightweight security techniques with the high dependability of heavyweight approaches.

2017-03-08
Torabi, A., Shishegar, A. A..  2015.  Combination of characteristic Green's function technique and rational function fitting method for computation of modal reflectivity at the optical waveguide end-facet. 2015 International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS). 2:14–21.

A novel method for computation of modal reflectivity at optical waveguide end-facet is presented. The method is based on the characteristic Green's function (CGF) technique. Using separability assumption of the structure and rational function fitting method (RFFM), a closed-form field expression is derived for optical planar waveguide. The uniform derived expression consists of discrete and continuous spectrum contributions which denotes guided and radiation modes effects respectively. An optimization problem is then defined to calculate the exact reflection coefficients at the end-facet for all extracted poles obtained from rational function fitting step. The proposed CGF-RFFM-optimization offers superior exactness in comparison with the previous reported CGF-complex images (CI) technique due to contribution of all components of field in the optimization problem. The main advantage of the proposed method lies in its simple implementation as well as precision for any refractive index contrast. Excellent numerical agreements with rigorous methods are shown in several examples.