Visible to the public Biblio

Filters: Keyword is OpenStack cloud platform  [Clear All Filters]
2017-11-20
Massonet, P., Dupont, S., Michot, A., Levin, A., Villari, M..  2016.  Enforcement of global security policies in federated cloud networks with virtual network functions. 2016 IEEE 15th International Symposium on Network Computing and Applications (NCA). :81–84.

Federated cloud networks are formed by federating virtual network segments from different clouds, e.g. in a hybrid cloud, into a single federated network. Such networks should be protected with a global federated cloud network security policy. The availability of network function virtualisation and service function chaining in cloud platforms offers an opportunity for implementing and enforcing global federated cloud network security policies. In this paper we describe an approach for enforcing global security policies in federated cloud networks. The approach relies on a service manifest that specifies the global network security policy. From this manifest configurations of the security functions for the different clouds of the federation are generated. This enables automated deployment and configuration of network security functions across the different clouds. The approach is illustrated with a case study where communications between trusted and untrusted clouds, e.g. public clouds, are encrypted. The paper discusses future work on implementing this architecture for the OpenStack cloud platform with the service function chaining API.

2017-03-08
Li, Xiao-Ke, Gu, Chun-Hua, Yang, Ze-Ping, Chang, Yao-Hui.  2015.  Virtual machine placement strategy based on discrete firefly algorithm in cloud environments. 2015 12th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :61–66.

Because of poor performance of heuristic algorithms on virtual machine placement problem in cloud environments, a multi-objective constraint optimization model of virtual machine placement is presented, which taking energy consumption and resource wastage as the objective. We solve the model based on the proposed discrete firefly algorithm. It takes firefly's location as the placement result, brightness as the objective value. Its movement strategy makes darker fireflies move to brighter fireflies in solution space. The continuous position after movement is discretized by the proposed discrete strategy. In order to speed up the search for solution, the local search mechanism for the optimal solution is introduced. The experimental results in OpenStack cloud platform show that the proposed algorithm makes less energy consumption and resource wastage compared with other algorithms.