Biblio
Filters: Keyword is travelling salesman problems [Clear All Filters]
Detecting Centralized Architecture-Based Botnets using Travelling Salesperson Non-Deterministic Polynomial-Hard problem-TSP-NP Technique. 2019 IEEE Conference on Application, Information and Network Security (AINS). :77—81.
.
2019. The threats posed by botnets in the cyber-space continues to grow each day and it has become very hard to detect or infiltrate bots given that the botnet developers each day keep changing the propagation and attack techniques. Currently, most of these attacks have been centered on stealing computing energy, theft of personal information and Distributed Denial of Service (DDoS attacks). In this paper, the authors propose a novel technique that uses the Non-Deterministic Polynomial-Time Hardness (NP-Hard Problem) based on the Traveling Salesperson Person (TSP) that depicts that a given bot, bj, is able to visit each host on a network environment, NE, and then it returns to the botmaster in form of instruction(command) through optimal minimization of the hosts that are or may be attacked. Given that bj represents a piece of malicious code and based on TSP-NP Hard Problem which forms part of combinatorial optimization, the authors present an effective approach for the detection of the botnet. It is worth noting that the concentration of this study is basically on the centralized botnet architecture. This holistic approach shows that botnet detection accuracy can be increased with a degree of certainty and potentially decrease the chances of false positives. Nevertheless, a discussion on the possible applicability and implementation has also been given in this paper.
Discrete cuttlefish optimization algorithm to solve the travelling salesman problem. 2015 Third World Conference on Complex Systems (WCCS). :1–6.
.
2015. The cuttlefish optimization algorithm is a new combinatorial optimization algorithm in the family of metaheuristics, applied in the continuous domain, and which provides mechanisms for local and global research. This paper presents a new adaptation of this algorithm in the discrete case, solving the famous travelling salesman problem, which is one of the discrete combinatorial optimization problems. This new adaptation proposes a reformulation of the equations to generate solutions depending a different algorithm cases. The experimental results of the proposed algorithm on instances of TSPLib library are compared with the other methods, show the efficiency and quality of this adaptation.