Biblio
Network virtualization is a fundamental technology for datacenters and upcoming wireless communications (e.g., 5G). It takes advantage of software-defined networking (SDN) that provides efficient network management by converting networking fabrics into SDN-capable devices. Moreover, white-box switches, which provide flexible and fast packet processing, are broadly deployed in commercial datacenters. A white-box switch requires a specific and restricted packet processing pipeline; however, to date, there has been no SDN-based network hypervisor that can support the pipeline of white-box switches. Therefore, in this paper, we propose WhiteVisor: a network hypervisor which can support the physical network composed of white-box switches. WhiteVisor converts a flow rule from the virtual network into a packet processing pipeline compatible with the white-box switch. We implement the prototype herein and show its feasibility and effectiveness with pipeline conversion and overhead.
Genes, proteins and other metabolites present in cellular environment exhibit a virtual network that represents the regulatory relationship among its constituents. This network is called Gene Regulatory Network (GRN). Computational reconstruction of GRN reveals the normal metabolic pathway as well as disease motifs. Availability of microarray gene expression data from normal and diseased tissues makes the job easier for computational biologists. Reconstruction of GRN is based on neural modeling. Here we have used discrete and continuous versions of a meta-heuristic algorithm named Firefly algorithm for structure and parameter learning of GRNs respectively. The discrete version for this problem is proposed by us and it has been applied to explore the discrete search space of GRN structure. To evaluate performance of the algorithm, we have used a widely used synthetic GRN data set. The algorithm shows an accuracy rate above 50% in finding GRN. The accuracy level of the performance of Firefly algorithm in structure and parameter optimization of GRN is promising.