Biblio
Multi-Objective Recommender Systems (MO-RS) consider several objectives to produce useful recommendations. Besides accuracy, other important quality metrics include novelty and diversity of recommended lists of items. Previous research up to this point focused on naive combinations of objectives. In this paper, we present a new and adaptable strategy for prioritizing objectives focused on users' preferences. Our proposed strategy is based on meta-features, i.e., characteristics of the input data that are influential in the final recommendation. We conducted a series of experiments on three real-world datasets, from which we show that: (i) the use of meta-features leads to the improvement of the Pareto solution set in the search process; (ii) the strategy is effective at making choices according to the specificities of the users' preferences; and (iii) our approach outperforms state-of-the-art methods in MO-RS.
As a clean energy, wind power is massively utilized in net recent years, which significantly reduced the pollution emission created from unit. This article referred to the concept of energy-saving and emission reducing; built a multiple objective function with represent of the emission of CO2& SO2, the coal-fired from units and the lowest unit fees of commitment; Proposed a algorithm to improving NSGA-D (Non-dominated Sorting Genetic Algorithm-II) for the dynamic characteristics, consider of some constraint conditions such as the shortest operation and fault time and climbing etc.; Optimized and commitment discrete magnitude and Load distribution continuous quantity with the double-optimization strategy; Introduced the fuzzy satisfaction-maximizing method to reaching a decision for Pareto solution and also nested into each dynamic solution; Through simulation for 10 units of wind power, the result show that this method is an effective way to optimize the Multi-objective unit commitment modeling in wind power integrated system with Mixed-integer variable.