Visible to the public Biblio

Filters: Keyword is Formal Specification and Analysis of Security-Critical Norms and Policies  [Clear All Filters]
2017-01-09
Ricard López Fogués, Pradeep K. Murukannaiah, Jose M. Such, Munindar P. Singh.  2017.  Understanding Sharing Policies in Multiparty Scenarios: Incorporating Context, Preferences, and Arguments into Decision Making. ACM Transactions on Computer-Human Interaction.

Social network services enable users to conveniently share personal information.  Often, the information shared concerns other people, especially other members of the social network service.  In such situations, two or more people can have conflicting privacy preferences; thus, an appropriate sharing policy may not be apparent. We identify such situations as multiuser privacy scenarios. Current approaches propose finding a sharing policy through preference aggregation.  However, studies suggest that users feel more confident in their decisions regarding sharing when they know the reasons behind each other's preferences.  The goals of this paper are (1) understanding how people decide the appropriate sharing policy in multiuser scenarios where arguments are employed, and (2) developing a computational model to predict an appropriate sharing policy for a given scenario. We report on a study that involved a survey of 988 Amazon MTurk users about a variety of multiuser scenarios and the optimal sharing policy for each scenario.  Our evaluation of the participants' responses reveals that contextual factors, user preferences, and arguments influence the optimal sharing policy in a multiuser scenario.  We develop and evaluate an inference model that predicts the optimal sharing policy given the three types of features.  We analyze the predictions of our inference model to uncover potential scenario types that lead to incorrect predictions, and to enhance our understanding of when multiuser scenarios are more or less prone to dispute.

 

To appear

2016-06-20
Nirav Ajmeri, Jiaming Jiang, Rada Y. Chirkova, Jon Doyle, Munindar P. Singh.  2016.  Coco: Runtime Reasoning about Conflicting Commitments. Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI). :1–7.

To interact effectively, agents must enter into commitments. What should an agent do when these commitments conflict? We describe Coco, an approach for reasoning about which specific commitments apply to specific parties in light of general types of commitments, specific circumstances, and dominance relations among specific commitments. Coco adapts answer-set programming to identify a maximalsetofnondominatedcommitments. It provides a modeling language and tool geared to support practical applications.

2016-05-04
Chopra, Amit K., Singh, Munindar P..  2016.  From Social Machines to Social Protocols: Software Engineering Foundations for Sociotechnical Systems. Proceedings of the 25th International Conference on World Wide Web. :903–914.

The overarching vision of social machines is to facilitate social processes by having computers provide administrative support. We conceive of a social machine as a sociotechnical system (STS): a software-supported system in which autonomous principals such as humans and organizations interact to exchange information and services. Existing approaches for social machines emphasize the technical aspects and inadequately support the meanings of social processes, leaving them informally realized in human interactions. We posit that a fundamental rethinking is needed to incorporate accountability, essential for addressing the openness of the Web and the autonomy of its principals. We introduce Interaction-Oriented Software Engineering (IOSE) as a paradigm expressly suited to capturing the social basis of STSs. Motivated by promoting openness and autonomy, IOSE focuses not on implementation but on social protocols, specifying how social relationships, characterizing the accountability of the concerned parties, progress as they interact. Motivated by providing computational support, IOSE adopts the accountability representation to capture the meaning of a social machine's states and transitions.

We demonstrate IOSE via examples drawn from healthcare. We reinterpret the classical software engineering (SE) principles for the STS setting and show how IOSE is better suited than traditional software engineering for supporting social processes. The contribution of this paper is a new paradigm for STSs, evaluated via conceptual analysis.

2016-04-11
Carver, J., Burcham, M., Kocak, S., Bener, A., Felderer, M., Gander, M., King, J., Markkula, J., Oivo, M., Sauerwein, C. et al..  2016.  Establishing a Baseline for Measuring Advancement in the Science of Security - an Analysis of the 2015 IEEE Security & Privacy Proceedings. 2016 Symposium and Bootcamp on the Science of Security (HotSoS).

To help establish a more scientific basis for security science, which will enable the development of fundamental theories and move the field from being primarily reactive to primarily proactive, it is important for research results to be reported in a scientifically rigorous manner. Such reporting will allow for the standard pillars of science, namely replication, meta-analysis, and theory building. In this paper we aim to establish a baseline of the state of scientific work in security through the analysis of indicators of scientific research as reported in the papers from the 2015 IEEE Symposium on Security and Privacy. To conduct this analysis, we developed a series of rubrics to determine the completeness of the papers relative to the type of evaluation used (e.g. case study, experiment, proof). Our findings showed that while papers are generally easy to read, they often do not explicitly document some key information like the research objectives, the process for choosing the cases to include in the studies, and the threats to validity. We hope that this initial analysis will serve as a baseline against which we can measure the advancement of the science of security.