Biblio
Particle Swarm Optimization (PSO) has been shown to perform very well on a wide range of optimization problems. One of the drawbacks to PSO is that the base algorithm assumes continuous variables. In this paper, we present a version of PSO that is able to optimize over discrete variables. This new PSO algorithm, which we call Integer and Categorical PSO (ICPSO), incorporates ideas from Estimation of Distribution Algorithms (EDAs) in that particles represent probability distributions rather than solution values, and the PSO update modifies the probability distributions. In this paper, we describe our new algorithm and compare its performance against other discrete PSO algorithms. In our experiments, we demonstrate that our algorithm outperforms comparable methods on both discrete benchmark functions and NK landscapes, a mathematical framework that generates tunable fitness landscapes for evaluating EAs.
In recent years, binary coding techniques are becoming increasingly popular because of their high efficiency in handling large-scale computer vision applications. It has been demonstrated that supervised binary coding techniques that leverage supervised information can significantly enhance the coding quality, and hence greatly benefit visual search tasks. Typically, a modern binary coding method seeks to learn a group of coding functions which compress data samples into binary codes. However, few methods pursued the coding functions such that the precision at the top of a ranking list according to Hamming distances of the generated binary codes is optimized. In this paper, we propose a novel supervised binary coding approach, namely Top Rank Supervised Binary Coding (Top-RSBC), which explicitly focuses on optimizing the precision of top positions in a Hamming-distance ranking list towards preserving the supervision information. The core idea is to train the disciplined coding functions, by which the mistakes at the top of a Hamming-distance ranking list are penalized more than those at the bottom. To solve such coding functions, we relax the original discrete optimization objective with a continuous surrogate, and derive a stochastic gradient descent to optimize the surrogate objective. To further reduce the training time cost, we also design an online learning algorithm to optimize the surrogate objective more efficiently. Empirical studies based upon three benchmark image datasets demonstrate that the proposed binary coding approach achieves superior image search accuracy over the state-of-the-arts.