Visible to the public Biblio

Filters: Keyword is closed-loop system  [Clear All Filters]
2020-09-08
El Abbadi, Reda, Jamouli, Hicham.  2019.  Stabilization of Cyber Physical System exposed to a random replay attack modeled by Markov chains. 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT). :528–533.
This paper is concerned with the stabilization problem of cyber physical system (CPS) exposed to a random replay attack. The study will ignore the effects of communication delays and packet losses, and the attention will be focused on the effect of replay attack on the stability of (CPS). The closed-loop system is modeled as Markovian jump linear system with two jumping parameters. Linear matrix inequality (LMI) formulation is used to give a condition for stochastic stabilization of the system. Finally the theory is illustrated through a numerical example.
2020-03-23
Alaoui, Sadek Belamfedel, El Houssaine, Tissir, Noreddine, Chaibi.  2019.  Modelling, analysis and design of active queue management to mitigate the effect of denial of service attack in wired/wireless network. 2019 International Conference on Wireless Networks and Mobile Communications (WINCOM). :1–7.
Mitigating the effect of Distributed Denial of Service (DDoS) attacks in wired/wireless networks is a problem of extreme importance. The present paper investigates this problem and proposes a secure AQM to encounter the effects of DDoS attacks on queue's router. The employed method relies on modelling the TCP/AQM system subjected to different DoS attack rate where the resulting closed-loop system is expressed as new Markovian Jump Linear System (MJLS). Sufficient delay-dependent conditions which guarantee the syntheses of a stabilizing control for the closed-loop system with a guaranteed cost J* are derived. Finally, a numerical example is displayed.
2020-01-13
Zhu, Yuting, Lin, Liyong, Su, Rong.  2019.  Supervisor Obfuscation Against Actuator Enablement Attack. 2019 18th European Control Conference (ECC). :1760–1765.
In this paper, we propose and address the problem of supervisor obfuscation against actuator enablement attack, in a common setting where the actuator attacker can eavesdrop the control commands issued by the supervisor. We propose a method to obfuscate an (insecure) supervisor to make it resilient against actuator enablement attack in such a way that the behavior of the original closed-loop system is preserved. An additional feature of the obfuscated supervisor, if it exists, is that it has exactly the minimum number of states among the set of all the resilient and behavior-preserving supervisors. Our approach involves a simple combination of two basic ideas: 1) a formulation of the problem of computing behavior-preserving supervisors as the problem of computing separating finite state automata under controllability and observability constraints, which can be tackled by using SAT solvers, and 2) the use of a recently proposed technique for the verification of attackability in our setting, with a normality assumption imposed on both the actuator attackers and supervisors.
Lin, Liyong, Thuijsman, Sander, Zhu, Yuting, Ware, Simon, Su, Rong, Reniers, Michel.  2019.  Synthesis of Supremal Successful Normal Actuator Attackers on Normal Supervisors. 2019 American Control Conference (ACC). :5614–5619.
In this paper, we propose and develop an actuator attack model for discrete-event systems. We assume the actuator attacker partially observes the execution of the closed-loop system and eavesdrops the control commands issued by the supervisor. The attacker can modify each control command on a specified subset of attackable events. The goal of the actuator attacker is to remain covert until it can establish a successful attack and lead the attacked closed-loop system into generating certain damaging strings. We then present a characterization for the existence of a successful attacker and prove the existence of the supremal successful attacker, when both the supervisor and the attacker are normal. Finally, we present an algorithm to synthesize the supremal successful normal attackers.
2017-03-08
Poveda, J. I., Teel, A. R..  2015.  Event-triggered based on-line optimization for a class of nonlinear systems. 2015 54th IEEE Conference on Decision and Control (CDC). :5474–5479.

We consider the problem of robust on-line optimization of a class of continuous-time nonlinear systems by using a discrete-time controller/optimizer, interconnected with the plant in a sampled-data structure. In contrast to classic approaches where the controller is updated after a fixed sufficiently long waiting time has passed, we design an event-based mechanism that triggers the control action only when the rate of change of the output of the plant is sufficiently small. By using this event-based update rule, a significant improvement in the convergence rate of the closed-loop dynamics is achieved. Since the closed-loop system combines discrete-time and continuous-time dynamics, and in order to guarantee robustness and semi-continuous dependence of solutions on parameters and initial conditions, we use the framework of hybrid set-valued dynamical systems to analyze the stability properties of the system. Numerical simulations illustrate the results.