Visible to the public Biblio

Filters: Keyword is search algorithm  [Clear All Filters]
2022-03-08
Yang, Cuicui, Liu, Pinjie.  2021.  Big Data Nearest Neighbor Similar Data Retrieval Algorithm based on Improved Random Forest. 2021 International Conference on Big Data Analysis and Computer Science (BDACS). :175—178.
In the process of big data nearest neighbor similar data retrieval, affected by the way of data feature extraction, the retrieval accuracy is low. Therefore, this paper proposes the design of big data nearest neighbor similar data retrieval algorithm based on improved random forest. Through the improvement of random forest model and the construction of random decision tree, the characteristics of current nearest neighbor big data are clarified. Based on the improved random forest, the hash code is generated. Finally, combined with the Hamming distance calculation method, the nearest neighbor similar data retrieval of big data is realized. The experimental results show that: in the multi label environment, the retrieval accuracy is improved by 9% and 10%. In the single label environment, the similar data retrieval accuracy of the algorithm is improved by 12% and 28% respectively.
2020-12-01
Nam, C., Li, H., Li, S., Lewis, M., Sycara, K..  2018.  Trust of Humans in Supervisory Control of Swarm Robots with Varied Levels of Autonomy. 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :825—830.

In this paper, we study trust-related human factors in supervisory control of swarm robots with varied levels of autonomy (LOA) in a target foraging task. We compare three LOAs: manual, mixed-initiative (MI), and fully autonomous LOA. In the manual LOA, the human operator chooses headings for a flocking swarm, issuing new headings as needed. In the fully autonomous LOA, the swarm is redirected automatically by changing headings using a search algorithm. In the mixed-initiative LOA, if performance declines, control is switched from human to swarm or swarm to human. The result of this work extends the current knowledge on human factors in swarm supervisory control. Specifically, the finding that the relationship between trust and performance improved for passively monitoring operators (i.e., improved situation awareness in higher LOAs) is particularly novel in its contradiction of earlier work. We also discover that operators switch the degree of autonomy when their trust in the swarm system is low. Last, our analysis shows that operator's preference for a lower LOA is confirmed for a new domain of swarm control.

2018-01-10
Ouali, C., Dumouchel, P., Gupta, V..  2017.  Robust video fingerprints using positions of salient regions. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3041–3045.
This paper describes a video fingerprinting system that is highly robust to audio and video transformations. The proposed system adapts a robust audio fingerprint extraction approach to video fingerprinting. The audio fingerprinting system converts the spectrogram into binary images, and then encodes the positions of salient regions selected from each binary image. Visual features are extracted in a similar way from the video images. We propose two visual fingerprint generation methods where fingerprints encode the positions of salient regions of greyscale video images. Salient regions of the first method are selected based on the intensity values of the image, while the second method identifies the regions that represent the highest variations between two successive images. The similarity between two fingerprints is defined as the intersection between their elements. The search algorithm is speeded up by an efficient implementation on a Graphics Processing Unit (GPU). We evaluate the performance of the proposed video system on TRECVID 2009 and 2010 datasets, and we show that this system achieves promising results and outperforms other state-of-the-art video copy detection methods for queries that do not includes geometric transformations. In addition, we show the effectiveness of this system for a challenging audio+video copy detection task.
2017-03-08
Prabhakar, A., Flaßkamp, K., Murphey, T. D..  2015.  Symplectic integration for optimal ergodic control. 2015 54th IEEE Conference on Decision and Control (CDC). :2594–2600.

Autonomous active exploration requires search algorithms that can effectively balance the need for workspace coverage with energetic costs. We present a strategy for planning optimal search trajectories with respect to the distribution of expected information over a workspace. We formulate an iterative optimal control algorithm for general nonlinear dynamics, where the metric for information gain is the difference between the spatial distribution and the statistical representation of the time-averaged trajectory, i.e. ergodicity. Previous work has designed a continuous-time trajectory optimization algorithm. In this paper, we derive two discrete-time iterative trajectory optimization approaches, one based on standard first-order discretization and the other using symplectic integration. The discrete-time methods based on first-order discretization techniques are both faster than the continuous-time method in the studied examples. Moreover, we show that even for a simple system, the choice of discretization has a dramatic impact on the resulting control and state trajectories. While the standard discretization method turns unstable, the symplectic method, which is structure-preserving, achieves lower values for the objective.