Visible to the public Biblio

Filters: Keyword is key performance indicators  [Clear All Filters]
2023-01-05
Mefteh, Syrine, Rosdahl, Alexa L., Fagan, Kaitlin G., Kumar, Anirudh V..  2022.  Evaluating Chemical Supply Chain Criticality in the Water Treatment Industry: A Risk Analysis and Mitigation Model. 2022 Systems and Information Engineering Design Symposium (SIEDS). :73—78.
The assurance of the operability of surface water treatment facilities lies in many factors, but the factor with the largest impact on said assurance is the availability of the necessary chemicals. Facilities across the country vary in their processes and sources, but all require chemicals to produce potable water. The purpose of this project was to develop a risk assessment tool to determine the shortfalls and risks in the water treatment industry's chemical supply chain, which was used to produce a risk mitigation plan ensuring plant operability. To achieve this, a Fault Tree was built to address four main areas of concern: (i) market supply and demand, (ii) chemical substitutability, (iii) chemical transportation, and (iv) chemical storage process. Expert elicitation was then conducted to formulate a Failure Modes and Effects Analysis (FMEA) and develop Radar Charts, regarding the operations and management of specific plants. These tools were then employed to develop a final risk mitigation plan comprising two parts: (i) a quantitative analysis comparing and contrasting the risks of the water treatment plants under study and (ii) a qualitative recommendation for each of the plants-both culminating in a mitigation model on how to control and monitor chemical-related risks.
2021-03-04
Wang, Y., Wang, Z., Xie, Z., Zhao, N., Chen, J., Zhang, W., Sui, K., Pei, D..  2020.  Practical and White-Box Anomaly Detection through Unsupervised and Active Learning. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—9.

To ensure quality of service and user experience, large Internet companies often monitor various Key Performance Indicators (KPIs) of their systems so that they can detect anomalies and identify failure in real time. However, due to a large number of various KPIs and the lack of high-quality labels, existing KPI anomaly detection approaches either perform well only on certain types of KPIs or consume excessive resources. Therefore, to realize generic and practical KPI anomaly detection in the real world, we propose a KPI anomaly detection framework named iRRCF-Active, which contains an unsupervised and white-box anomaly detector based on Robust Random Cut Forest (RRCF), and an active learning component. Specifically, we novelly propose an improved RRCF (iRRCF) algorithm to overcome the drawbacks of applying original RRCF in KPI anomaly detection. Besides, we also incorporate the idea of active learning to make our model benefit from high-quality labels given by experienced operators. We conduct extensive experiments on a large-scale public dataset and a private dataset collected from a large commercial bank. The experimental resulta demonstrate that iRRCF-Active performs better than existing traditional statistical methods, unsupervised learning methods and supervised learning methods. Besides, each component in iRRCF-Active has also been demonstrated to be effective and indispensable.

2020-09-28
Sliwa, Benjamin, Haferkamp, Marcus, Al-Askary, Manar, Dorn, Dennis, Wietfeld, Christian.  2018.  A radio-fingerprinting-based vehicle classification system for intelligent traffic control in smart cities. 2018 Annual IEEE International Systems Conference (SysCon). :1–5.
The measurement and provision of precise and up-to-date traffic-related key performance indicators is a key element and crucial factor for intelligent traffic control systems in upcoming smart cities. The street network is considered as a highly-dynamic Cyber Physical System (CPS) where measured information forms the foundation for dynamic control methods aiming to optimize the overall system state. Apart from global system parameters like traffic flow and density, specific data, such as velocity of individual vehicles as well as vehicle type information, can be leveraged for highly sophisticated traffic control methods like dynamic type-specific lane assignments. Consequently, solutions for acquiring these kinds of information are required and have to comply with strict requirements ranging from accuracy over cost-efficiency to privacy preservation. In this paper, we present a system for classifying vehicles based on their radio-fingerprint. In contrast to other approaches, the proposed system is able to provide real-time capable and precise vehicle classification as well as cost-efficient installation and maintenance, privacy preservation and weather independence. The system performance in terms of accuracy and resource-efficiency is evaluated in the field using comprehensive measurements. Using a machine learning based approach, the resulting success ratio for classifying cars and trucks is above 99%.
Becher, Kilian, Beck, Martin, Strufe, Thorsten.  2019.  An Enhanced Approach to Cloud-based Privacy-preserving Benchmarking. 2019 International Conference on Networked Systems (NetSys). :1–8.
Benchmarking is an important measure for companies to investigate their performance and to increase efficiency. As companies usually are reluctant to provide their key performance indicators (KPIs) for public benchmarks, privacy-preserving benchmarking systems are required. In this paper, we present an enhanced privacy-preserving benchmarking protocol, which we implemented and evaluated based on the real-world scenario of product cost optimisation. It is based on homomorphic encryption and enables cloud-based KPI comparison, providing a variety of statistical measures. The theoretical and empirical evaluation of our benchmarking system underlines its practicability.
2017-09-19
Ragmani, Awatif, El Omri, Amina, Abghour, Noreddine, Moussaid, Khalid, Rida, Mohammed.  2016.  An Improved Scheduling Strategy in Cloud Computing Using Fuzzy Logic. Proceedings of the International Conference on Big Data and Advanced Wireless Technologies. :22:1–22:9.

Within few years, Cloud computing has emerged as the most promising IT business model. Thanks to its various technical and financial advantages, Cloud computing continues to convince every day new users coming from scientific and industrial sectors. To satisfy the various users' requirements, Cloud providers must maximize the performance of their IT resources to ensure the best service at the lowest cost. The performance optimization efforts in the Cloud can be achieved at different levels and aspects. In the present paper, we propose to introduce a fuzzy logic process in scheduling strategy for public Cloud in order to improve the response time, processing time and total cost. In fact, fuzzy logic has proven his ability to solve the problem of optimization in several fields such as data mining, image processing, networking and much more.

2017-03-08
Luo, Z., Gilimyanov, R., Zhuang, H., Zhang, J..  2015.  Network-Wide Optimization of Uplink Fractional Power Control in LTE Networks. 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall). :1–5.

Next generation cellular networks will provide users better experiences by densely deploying smaller cells, which results in more complicated interferences environment. In order to coordinate interference, power control for uplink is particularly challenging due to random locations of uplink transmitter and dense deployment. In this paper, we address the uplink fractional power control (FPC) optimization problem from network optimization perspective. The relations between FPC parameters and network KPIs (Key Performance Indicators) are investigated. Rather than considering any single KPI in conventional approaches, multi-KPI optimization problem is formulated and solved. By relaxing the discrete optimization problem to a continuous one, the gradients of multiple KPIs with respect to FPC parameters are derived. The gradient enables efficiently searching for optimized FPC parameters which is particularly desirable for dense deployment of large number of cells. Simulation results show that the proposed scheme greatly outperforms the traditional one, in terms of network mean load, call drop & block ratio, and convergence speed.