Visible to the public Biblio

Filters: Keyword is Stars  [Clear All Filters]
2023-03-31
Fidalgo, Pedro, Lopes, Rui J., Faloutsos, Christos.  2022.  Star-Bridge: a topological multidimensional subgraph analysis to detect fraudulent nodes and rings in telecom networks. 2022 IEEE International Conference on Big Data (Big Data). :2239–2242.
Fraud mechanisms have evolved from isolated actions performed by single individuals to complex criminal networks. This paper aims to contribute to the identification of potentially relevant nodes in fraud networks. Whilst traditional methods for fraud detection rely on identifying abnormal patterns, this paper proposes STARBRIDGE: a new linear and scalable, ranked out, parameter free method to identify fraudulent nodes and rings based on Bridging, Influence and Control metrics. This is applied to the telecommunications domain where fraudulent nodes form a star-bridge-star pattern. Over 75% of nodes involved in fraud denote control, bridging centrality and doubled the influence scores, when compared to non-fraudulent nodes in the same role, stars and bridges being chief positions.
2017-03-08
Kaur, R., Singh, S..  2015.  Detecting anomalies in Online Social Networks using graph metrics. 2015 Annual IEEE India Conference (INDICON). :1–6.

Online Social Networks have emerged as an interesting area for analysis where each user having a personalized user profile interact and share information with each other. Apart from analyzing the structural characteristics, detection of abnormal and anomalous activities in social networks has become need of the hour. These anomalous activities represent the rare and mischievous activities that take place in the network. Graphical structure of social networks has encouraged the researchers to use various graph metrics to detect the anomalous activities. One such measure that seemed to be highly beneficial to detect the anomalies was brokerage value which helped to detect the anomalies with high accuracy. Also, further application of the measure to different datasets verified the fact that the anomalous behavior detected by the proposed measure was efficient as compared to the already proposed measures in Oddball Algorithm.