Biblio
Software Quality Testing has always been a crucial part of the software development process and lately, there has been a rise in the usage of testing applications. While a well-planned and performed test, regardless of its nature - automated or manual, is a key factor when deciding on the results of the test, it is often not enough to give a more deep and thorough view of the whole process. That can be achieved with properly selected software metrics that can be used for proper risk assessment and evaluation of the development.This paper considers the most commonly used metrics when measuring a performed test and examines metrics that can be applied in the development process.
Testing which is an indispensable part of software engineering is itself an art and science which emerged as a discipline over a period. On testing, if defects are found, testers diminish the risk by providing the awareness of defects and solutions to deal with them before release. If testing does not find any defects, testing assure that under certain conditions the system functions correctly. To guarantee that enough testing has been done, major risk areas need to be tested. We have to identify the risks, analyse and control them. We need to categorize the risk items to decide the extent of testing to be covered. Also, Implementation of structured metrics is lagging in software testing. Efficient metrics are necessary to evaluate, manage the testing process and make testing a part of engineering discipline. This paper proposes the usage of risk based testing using FMEA technique and provides an ideal set of metrics which provides a way to ensure effective testing process.
One of the specially designated versatile networks, commonly referred to as MANET, performs on the basics that each and every one grouping in nodes totally operate in self-sorting out limits. In any case, performing in a group capacity maximizes quality and different sources. Mobile ad hoc network is a wireless infrastructureless network. Due to its unique features, various challenges are faced under MANET when the role of routing and its security comes into play. The review has demonstrated that the impact of failures during the information transmission has not been considered in the existing research. The majority of strategies for ad hoc networks just determines the path and transmits the data which prompts to packet drop in case of failures, thus resulting in low dependability. The majority of the existing research has neglected the use of the rejoining processing of the root nodes network. Most of the existing techniques are based on detecting the failures but the use of path re-routing has also been neglected in the existing methods. Here, we have proposed a method of path re-routing for managing the authorized nodes and managing the keys for group in ad hoc environment. Securing Schemes, named as 2ACK and the EGSR schemes have been proposed, which may be truly interacted to most of the routing protocol. The path re-routing has the ability to reduce the ratio of dropped packets. The comparative analysis has clearly shown that the proposed technique outperforms the available techniques in terms of various quality metrics.
Wireless Capsule Endoscopy (WCE) is a noninvasive device for detection of gastrointestinal problems especially small bowel diseases, such as polyps which causes gastrointestinal bleeding. The quality of WCE images is very important for diagnosis. In this paper, a new method is proposed to improve the quality of WCE images. In our proposed method for improving the quality of WCE images, Removing Noise and Contrast Enhancement (RNCE) algorithm is used. The algorithm have been implemented and tested on some real images. Quality metrics used for performance evaluation of the proposed method is Structural Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR) and Edge Strength Similarity for Image (ESSIM). The results obtained from SSIM, PSNR and ESSIM indicate that the implemented RNCE method improve the quality of WCE images significantly.
Image Denoising nowadays is a great Challenge in the field of image processing. Since Discrete wavelet transform (DWT) is one of the powerful and perspective approaches in the area of image de noising. But fixing an optimal threshold is the key factor to determine the performance of denoising algorithm using (DWT). The optimal threshold can be estimated from the image statistics for getting better performance of denoising in terms of clarity or quality of the images. In this paper we analyzed various methods of denoising from the sonar image by using various thresholding methods (Vishnu Shrink, Bayes Shrink and Neigh Shrink) experimentally and compare the result in terms of various image quality parameters. (PSNR,MSE,SSIM and Entropy). The results of the proposed method show that there is an improvenment in the visual quality of sonar images by suppressing the speckle noise and retaining edge details.