Biblio
A thorough understanding of society’s privacy incidents is of paramount importance for technical solutions, training/education, social research, and legal scholarship in privacy. The goal of the PrIncipedia project is to provide this understanding by developing the first comprehensive database of privacy incidents, enabling the exploration of a variety of privacy-related research questions. We provide a working definition of “privacy incident” and evidence that it meets end-user perceptions of privacy. We also provide semi-automated support for building the database through a learned classifier that detects news articles about privacy incidents.
Modern Internet applications are being disaggregated into a microservice-based architecture, with services being updated and deployed hundreds of times a day. The accelerated software life cycle and heterogeneity of language runtimes in a single application necessitates a new approach for testing the resiliency of these applications in production infrastructures. We present Gremlin, a framework for systematically testing the failure-handling capabilities of microservices. Gremlin is based on the observation that microservices are loosely coupled and thus rely on standard message-exchange patterns over the network. Gremlin allows the operator to easily design tests and executes them by manipulating inter-service messages at the network layer. We show how to use Gremlin to express common failure scenarios and how developers of an enterprise application were able to discover previously unknown bugs in their failure-handling code without modifying the application.
To help establish a more scientific basis for security science, which will enable the development of fundamental theories and move the field from being primarily reactive to primarily proactive, it is important for research results to be reported in a scientifically rigorous manner. Such reporting will allow for the standard pillars of science, namely replication, meta-analysis, and theory building. In this paper we aim to establish a baseline of the state of scientific work in security through the analysis of indicators of scientific research as reported in the papers from the 2015 IEEE Symposium on Security and Privacy. To conduct this analysis, we developed a series of rubrics to determine the completeness of the papers relative to the type of evaluation used (e.g. case study, experiment, proof). Our findings showed that while papers are generally easy to read, they often do not explicitly document some key information like the research objectives, the process for choosing the cases to include in the studies, and the threats to validity. We hope that this initial analysis will serve as a baseline against which we can measure the advancement of the science of security.
Realizing the benefits of SDN for many network management applications (e.g., traffic engineering, service chaining, topology reconfiguration) involves addressing complex optimizations that are central to these problems. Unfortunately, such optimization problems require (a) significant manual effort and expertise to express and (b) non-trivial computation and/or carefully crafted heuristics to solve. Our goal is to simplify the deployment of SDN applications using general high-level abstractions for capturing optimization requirements from which we can efficiently generate optimal solutions. To this end, we present SOL, a framework that demonstrates that it is possible to simultaneously achieve generality and efficiency. The insight underlying SOL is that many SDN applications can be recast within a unifying path-based optimization abstraction. Using this, SOL can efficiently generate near-optimal solutions and device configurations to implement them. We show that SOL provides comparable or better scalability than custom optimization solutions for diverse applications, allows a balancing of optimality and route churn per reconfiguration, and interfaces with modern SDN controllers.
To appear
Software-defined networking (SDN) can enable diverse network management applications such as traffic engineering, service chaining, network function outsourcing, and topology reconfiguration. Realizing the benefits of SDN for these applications, however, entails addressing complex network optimizations that are central to these problems. Unfortunately, such optimization problems require significant manual effort and expertise to express and non-trivial computation and/or carefully crafted heuristics to solve. Our vision is to simplify the deployment of SDN applications using general high-level abstractions for capturing optimization requirements from which we can efficiently generate optimal solutions. To this end, we present SOL, a framework that demonstrates that it is indeed possible to simultaneously achieve generality and efficiency. The insight underlying SOL is that SDN applications can be recast within a unifying path-based optimization abstraction, from which it efficiently generates near-optimal solutions, and device configurations to implement those solutions. We illustrate the generality of SOL by prototyping diverse and new applications. We show that SOL simplifies the development of SDN-based network optimization applications and provides comparable or better scalability than custom optimization solutions.
Growing traffic volumes and the increasing complexity of attacks pose a constant scaling challenge for network intrusion prevention systems (NIPS). In this respect, offloading NIPS processing to compute clusters offers an immediately deployable alternative to expensive hardware upgrades. In practice, however, NIPS offloading is challenging on three fronts in contrast to passive network security functions: (1) NIPS offloading can impact other traffic engineering objectives; (2) NIPS offloading impacts user perceived latency; and (3) NIPS actively change traffic volumes by dropping unwanted traffic. To address these challenges, we present the SNIPS system. We design a formal optimization framework that captures tradeoffs across scalability, network load, and latency. We provide a practical implementation using recent advances in software-defined networking without requiring modifications to NIPS hardware. Our evaluations on realistic topologies show that SNIPS can reduce the maximum load by up to 10× while only increasing the latency by 2%.