Visible to the public Biblio

Filters: Keyword is rendering (computer graphics)  [Clear All Filters]
2023-06-22
Das, Soumyajit, Dayam, Zeeshaan, Chatterjee, Pinaki Sankar.  2022.  Application of Random Forest Classifier for Prevention and Detection of Distributed Denial of Service Attacks. 2022 OITS International Conference on Information Technology (OCIT). :380–384.
A classification issue in machine learning is the issue of spotting Distributed Denial of Service (DDos) attacks. A Denial of Service (DoS) assault is essentially a deliberate attack launched from a single source with the implied intent of rendering the target's application unavailable. Attackers typically aims to consume all available network bandwidth in order to accomplish this, which inhibits authorized users from accessing system resources and denies them access. DDoS assaults, in contrast to DoS attacks, include several sources being used by the attacker to launch an attack. At the network, transportation, presentation, and application layers of a 7-layer OSI architecture, DDoS attacks are most frequently observed. With the help of the most well-known standard dataset and multiple regression analysis, we have created a machine learning model in this work that can predict DDoS and bot assaults based on traffic.
2023-03-03
Saxena, Anish, Panda, Biswabandan.  2022.  DABANGG: A Case for Noise Resilient Flush-Based Cache Attacks. 2022 IEEE Security and Privacy Workshops (SPW). :323–334.
Flush-based cache attacks like Flush+Reload and Flush+Flush are highly precise and effective. Most of the flush-based attacks provide high accuracy in controlled and isolated environments where attacker and victim share OS pages. However, we observe that these attacks are prone to low accuracy on a noisy multi-core system with co-running applications. Two root causes for the varying accuracy of flush-based attacks are: (i) the dynamic nature of core frequencies that fluctuate depending on the system load, and (ii) the relative placement of victim and attacker threads in the processor, like same or different physical cores. These dynamic factors critically affect the execution latency of key instructions like clflush and mov, rendering the pre-attack calibration step ineffective.We propose DABANGG, a set of novel refinements to make flush-based attacks resilient to system noise by making them aware of frequency and thread placement. First, we introduce pre-attack calibration that is aware of instruction latency variation. Second, we use low-cost attack-time optimizations like fine-grained busy waiting and periodic feedback about the latency thresholds to improve the effectiveness of the attack. Finally, we provide victim-specific parameters that significantly improve the attack accuracy. We evaluate DABANGG-enabled Flush+Reload and Flush+Flush attacks against the standard attacks in side-channel and covert-channel experiments with varying levels of compute, memory, and IO-intensive system noise. In all scenarios, DABANGG+Flush+Reload and DABANGG+Flush+Flush outperform the standard attacks in stealth and accuracy.
ISSN: 2770-8411
2022-12-20
Song, Suhwan, Hur, Jaewon, Kim, Sunwoo, Rogers, Philip, Lee, Byoungyoung.  2022.  R2Z2: Detecting Rendering Regressions in Web Browsers through Differential Fuzz Testing. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :1818–1829.
A rendering regression is a bug introduced by a web browser where a web page no longer functions as users expect. Such rendering bugs critically harm the usability of web browsers as well as web applications. The unique aspect of rendering bugs is that they affect the presented visual appearance of web pages, but those web pages have no pre-defined correct appearance. Therefore, it is challenging to automatically detect errors in their appearance. In practice, web browser vendors rely on non-trivial and time-prohibitive manual analysis to detect and handle rendering regressions. This paper proposes R2Z2, an automated tool to find rendering regressions. R2Z2 uses the differential fuzz testing approach, which repeatedly compares the rendering results of two different versions of a browser while providing the same HTML as input. If the rendering results are different, R2Z2 further performs cross browser compatibility testing to check if the rendering difference is indeed a rendering regression. After identifying a rendering regression, R2Z2 will perform an in-depth analysis to aid in fixing the regression. Specifically, R2Z2 performs a delta-debugging-like analysis to pinpoint the exact browser source code commit causing the regression, as well as inspecting the rendering pipeline stages to pinpoint which pipeline stage is responsible. We implemented a prototype of R2Z2 particularly targeting the Chrome browser. So far, R2Z2 found 11 previously undiscovered rendering regressions in Chrome, all of which were confirmed by the Chrome developers. Importantly, in each case, R2Z2 correctly reported the culprit commit. Moreover, R2Z2 correctly pin-pointed the culprit rendering pipeline stage in all but one case.
ISSN: 1558-1225
2022-12-01
Andersen, Erik, Chiarandini, Marco, Hassani, Marwan, Jänicke, Stefan, Tampakis, Panagiotis, Zimek, Arthur.  2022.  Evaluation of Probability Distribution Distance Metrics in Traffic Flow Outlier Detection. 2022 23rd IEEE International Conference on Mobile Data Management (MDM). :64—69.

Recent approaches have proven the effectiveness of local outlier factor-based outlier detection when applied over traffic flow probability distributions. However, these approaches used distance metrics based on the Bhattacharyya coefficient when calculating probability distribution similarity. Consequently, the limited expressiveness of the Bhattacharyya coefficient restricted the accuracy of the methods. The crucial deficiency of the Bhattacharyya distance metric is its inability to compare distributions with non-overlapping sample spaces over the domain of natural numbers. Traffic flow intensity varies greatly, which results in numerous non-overlapping sample spaces, rendering metrics based on the Bhattacharyya coefficient inappropriate. In this work, we address this issue by exploring alternative distance metrics and showing their applicability in a massive real-life traffic flow data set from 26 vital intersections in The Hague. The results on these data collected from 272 sensors for more than two years show various advantages of the Earth Mover's distance both in effectiveness and efficiency.

2022-10-20
Boukela, Lynda, Zhang, Gongxuan, Yacoub, Meziane, Bouzefrane, Samia.  2021.  A near-autonomous and incremental intrusion detection system through active learning of known and unknown attacks. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :374—379.
Intrusion detection is a traditional practice of security experts, however, there are several issues which still need to be tackled. Therefore, in this paper, after highlighting these issues, we present an architecture for a hybrid Intrusion Detection System (IDS) for an adaptive and incremental detection of both known and unknown attacks. The IDS is composed of supervised and unsupervised modules, namely, a Deep Neural Network (DNN) and the K-Nearest Neighbors (KNN) algorithm, respectively. The proposed system is near-autonomous since the intervention of the expert is minimized through the active learning (AL) approach. A query strategy for the labeling process is presented, it aims at teaching the supervised module to detect unknown attacks and improve the detection of the already-known attacks. This teaching is achieved through sliding windows (SW) in an incremental fashion where the DNN is retrained when the data is available over time, thus rendering the IDS adaptive to cope with the evolutionary aspect of the network traffic. A set of experiments was conducted on the CICIDS2017 dataset in order to evaluate the performance of the IDS, promising results were obtained.
2022-06-09
Pletinckx, Stijn, Jansen, Geert Habben, Brussen, Arjen, van Wegberg, Rolf.  2021.  Cash for the Register? Capturing Rationales of Early COVID-19 Domain Registrations at Internet-scale 2021 12th International Conference on Information and Communication Systems (ICICS). :41–48.
The COVID-19 pandemic introduced novel incentives for adversaries to exploit the state of turmoil. As we have witnessed with the increase in for instance phishing attacks and domain name registrations piggybacking the COVID-19 brand name. In this paper, we perform an analysis at Internet-scale of COVID-19 domain name registrations during the early stages of the virus' spread, and investigate the rationales behind them. We leverage the DomainTools COVID-19 Threat List and additional measurements to analyze over 150,000 domains registered between January 1st 2020 and May 1st 2020. We identify two key rationales for covid-related domain registrations. Online marketing, by either redirecting traffic or hosting a commercial service on the domain, and domain parking, by registering domains containing popular COVID-19 keywords, presumably anticipating a profit when reselling the domain later on. We also highlight three public policy take-aways that can counteract this domain registration behavior.
2022-05-23
Du, Hao, Zhang, Yu, Qin, Bo, Xu, Weiduo.  2021.  Immersive Visualization VR System of 3D Time-varying Field. 2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST). :322–326.
To meet the application need of dynamic visualization VR display of 3D time-varying field, this paper designed an immersive visualization VR system of 3D time-varying field based on the Unity 3D framework. To reduce visual confusion caused by 3D time-varying field flow line drawing and improve the quality and efficiency of visualization rendering drawing, deep learning was used to extract features from the mesoscale vortex of the 3D time-varying field. Moreover, the 3D flow line dynamic visualization drawing was implemented through the Unity Visual Effect Graph particle system.
2021-05-20
Usher, Will, Pascucci, Valerio.  2020.  Interactive Visualization of Terascale Data in the Browser: Fact or Fiction? 2020 IEEE 10th Symposium on Large Data Analysis and Visualization (LDAV). :27—36.

Information visualization applications have become ubiquitous, in no small part thanks to the ease of wide distribution and deployment to users enabled by the web browser. Scientific visualization applications, relying on native code libraries and parallel processing, have been less suited to such widespread distribution, as browsers do not provide the required libraries or compute capabilities. In this paper, we revisit this gap in visualization technologies and explore how new web technologies, WebAssembly and WebGPU, can be used to deploy powerful visualization solutions for large-scale scientific data in the browser. In particular, we evaluate the programming effort required to bring scientific visualization applications to the browser through these technologies and assess their competitiveness against classic native solutions. As a main example, we present a new GPU-driven isosurface extraction method for block-compressed data sets, that is suitable for interactive isosurface computation on large volumes in resource-constrained environments, such as the browser. We conclude that web browsers are on the verge of becoming a competitive platform for even the most demanding scientific visualization tasks, such as interactive visualization of isosurfaces from a 1TB DNS simulation. We call on researchers and developers to consider investing in a community software stack to ease use of these upcoming browser features to bring accessible scientific visualization to the browser.

2021-05-05
Chalkiadakis, Nikolaos, Deyannis, Dimitris, Karnikis, Dimitris, Vasiliadis, Giorgos, Ioannidis, Sotiris.  2020.  The Million Dollar Handshake: Secure and Attested Communications in the Cloud. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :63—70.

The number of applications and services that are hosted on cloud platforms is constantly increasing. Nowadays, more and more applications are hosted as services on cloud platforms, co-existing with other services in a mutually untrusted environment. Facilities such as virtual machines, containers and encrypted communication channels aim to offer isolation between the various applications and protect sensitive user data. However, such techniques are not always able to provide a secure execution environment for sensitive applications nor they offer guarantees that data are not monitored by an honest but curious provider once they reach the cloud infrastructure. The recent advancements of trusted execution environments within commodity processors, such as Intel SGX, provide a secure reverse sandbox, where code and data are isolated even from the underlying operating system. Moreover, Intel SGX provides a remote attestation mechanism, allowing the communicating parties to verify their identity as well as prove that code is executed on hardware-assisted software enclaves. Many approaches try to ensure code and data integrity, as well as enforce channel encryption schemes such as TLS, however, these techniques are not enough to achieve complete isolation and secure communications without hardware assistance or are not efficient in terms of performance. In this work, we design and implement a practical attestation system that allows the service provider to offer a seamless attestation service between the hosted applications and the end clients. Furthermore, we implement a novel caching system that is capable to eliminate the latencies introduced by the remote attestation process. Our approach allows the parties to attest one another before each communication attempt, with improved performance when compared to a standard TLS handshake.

2021-02-03
Velaora, M., Roy, R. van, Guéna, F..  2020.  ARtect, an augmented reality educational prototype for architectural design. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :110—115.

ARtect is an Augmented Reality application developed with Unity 3D, which envisions an educational interactive and immersive tool for architects, designers, researchers, and artists. This digital instrument renders the competency to visualize custom-made 3D models and 2D graphics in interior and exterior environments. The user-friendly interface offers an accurate insight before the materialization of any architectural project, enabling evaluation of the design proposal. This practice could be integrated into learning architectural design process, saving resources of printed drawings, and 3D carton models during several stages of spatial conception.

Lee, J..  2020.  CanvasMirror: Secure Integration of Third-Party Libraries in a WebVR Environment. 2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S). :75—76.

Web technology has evolved to offer 360-degree immersive browsing experiences. This new technology, called WebVR, enables virtual reality by rendering a three-dimensional world on an HTML canvas. Unfortunately, there exists no browser-supported way of sharing this canvas between different parties. As a result, third-party library providers with ill intent (e.g., stealing sensitive information from end-users) can easily distort the entire WebVR site. To mitigate the new threats posed in WebVR, we propose CanvasMirror, which allows publishers to specify the behaviors of third-party libraries and enforce this specification. We show that CanvasMirror effectively separates the third-party context from the host origin by leveraging the privilege separation technique and safely integrates VR contents on a shared canvas.

2021-02-01
Yeh, M., Tang, S., Bhattad, A., Zou, C., Forsyth, D..  2020.  Improving Style Transfer with Calibrated Metrics. 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). :3149–3157.
Style transfer produces a transferred image which is a rendering of a content image in the manner of a style image. We seek to understand how to improve style transfer.To do so requires quantitative evaluation procedures, but current evaluation is qualitative, mostly involving user studies. We describe a novel quantitative evaluation procedure. Our procedure relies on two statistics: the Effectiveness (E) statistic measures the extent that a given style has been transferred to the target, and the Coherence (C) statistic measures the extent to which the original image's content is preserved. Our statistics are calibrated to human preference: targets with larger values of E and C will reliably be preferred by human subjects in comparisons of style and content, respectively.We use these statistics to investigate relative performance of a number of Neural Style Transfer (NST) methods, revealing a number of intriguing properties. Admissible methods lie on a Pareto frontier (i.e. improving E reduces C, or vice versa). Three methods are admissible: Universal style transfer produces very good C but weak E; modifying the optimization used for Gatys' loss produces a method with strong E and strong C; and a modified cross-layer method has slightly better E at strong cost in C. While the histogram loss improves the E statistics of Gatys' method, it does not make the method admissible. Surprisingly, style weights have relatively little effect in improving EC scores, and most variability in transfer is explained by the style itself (meaning experimenters can be misguided by selecting styles). Our GitHub Link is available1.
Rathi, P., Adarsh, P., Kumar, M..  2020.  Deep Learning Approach for Arbitrary Image Style Fusion and Transformation using SANET model. 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184). :1049–1057.
For real-time applications of arbitrary style transformation, there is a trade-off between the quality of results and the running time of existing algorithms. Hence, it is required to maintain the equilibrium of the quality of generated artwork with the speed of execution. It's complicated for the present arbitrary style-transformation procedures to preserve the structure of content-image while blending with the design and pattern of style-image. This paper presents the implementation of a network using SANET models for generating impressive artworks. It is flexible in the fusion of new style characteristics while sustaining the semantic-structure of the content-image. The identity-loss function helps to minimize the overall loss and conserves the spatial-arrangement of content. The results demonstrate that this method is practically efficient, and therefore it can be employed for real-time fusion and transformation using arbitrary styles.
2021-01-20
Atlidakis, V., Godefroid, P., Polishchuk, M..  2020.  Checking Security Properties of Cloud Service REST APIs. 2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST). :387—397.

Most modern cloud and web services are programmatically accessed through REST APIs. This paper discusses how an attacker might compromise a service by exploiting vulnerabilities in its REST API. We introduce four security rules that capture desirable properties of REST APIs and services. We then show how a stateful REST API fuzzer can be extended with active property checkers that automatically test and detect violations of these rules. We discuss how to implement such checkers in a modular and efficient way. Using these checkers, we found new bugs in several deployed production Azure and Office365 cloud services, and we discuss their security implications. All these bugs have been fixed.

2020-12-11
Vasiliu, V., Sörös, G..  2019.  Coherent Rendering of Virtual Smile Previews with Fast Neural Style Transfer. 2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). :66—73.

Coherent rendering in augmented reality deals with synthesizing virtual content that seamlessly blends in with the real content. Unfortunately, capturing or modeling every real aspect in the virtual rendering process is often unfeasible or too expensive. We present a post-processing method that improves the look of rendered overlays in a dental virtual try-on application. We combine the original frame and the default rendered frame in an autoencoder neural network in order to obtain a more natural output, inspired by artistic style transfer research. Specifically, we apply the original frame as style on the rendered frame as content, repeating the process with each new pair of frames. Our method requires only a single forward pass, our shallow architecture ensures fast execution, and our internal feedback loop inherently enforces temporal consistency.

2020-12-07
Reimann, M., Klingbeil, M., Pasewaldt, S., Semmo, A., Trapp, M., Döllner, J..  2018.  MaeSTrO: A Mobile App for Style Transfer Orchestration Using Neural Networks. 2018 International Conference on Cyberworlds (CW). :9–16.

Mobile expressive rendering gained increasing popularity among users seeking casual creativity by image stylization and supports the development of mobile artists as a new user group. In particular, neural style transfer has advanced as a core technology to emulate characteristics of manifold artistic styles. However, when it comes to creative expression, the technology still faces inherent limitations in providing low-level controls for localized image stylization. This work enhances state-of-the-art neural style transfer techniques by a generalized user interface with interactive tools to facilitate a creative and localized editing process. Thereby, we first propose a problem characterization representing trade-offs between visual quality, run-time performance, and user control. We then present MaeSTrO, a mobile app for orchestration of neural style transfer techniques using iterative, multi-style generative and adaptive neural networks that can be locally controlled by on-screen painting metaphors. At this, first user tests indicate different levels of satisfaction for the implemented techniques and interaction design.

2020-08-28
Huang, Bai-Ruei, Lin, Chang Hong, Lee, Chia-Han.  2012.  Mobile augmented reality based on cloud computing. and Identification Anti-counterfeiting, Security. :1—5.
In this paper, we implemented a mobile augmented reality system based on cloud computing. This system uses a mobile device with a camera to capture images of book spines and sends processed features to the cloud. In the cloud, the features are compared with the database and the information of the best matched book would be sent back to the mobile device. The information will then be rendered on the display via augmented reality. In order to reduce the transmission cost, the mobile device is used to perform most of the image processing tasks, such as the preprocessing, resizing, corner detection, and augmented reality rendering. On the other hand, the cloud is used to realize routine but large quantity feature comparisons. Using the cloud as the database also makes the future extension much more easily. For our prototype system, we use an Android smart phone as our mobile device, and Chunghwa Telecoms hicloud as the cloud.
2020-07-27
Gorodnichev, Mikhail G., Kochupalov, Alexander E., Gematudinov, Rinat A..  2018.  Asynchronous Rendering of Texts in iOS Applications. 2018 IEEE International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT QM IS). :643–645.
This article is devoted to new asynchronous methods for rendering text information in mobile applications for iOS operating system.
2020-06-12
Cui, Yongcheng, Wang, Wenyong.  2019.  Colorless Video Rendering System via Generative Adversarial Networks. 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :464—467.

In today's society, even though the technology is so developed, the coloring of computer images has remained at the manual stage. As a carrier of human culture and art, film has existed in our history for hundred years. With the development of science and technology, movies have developed from the simple black-and-white film era to the current digital age. There is a very complicated process for coloring old movies. Aside from the traditional hand-painting techniques, the most common method is to use post-processing software for coloring movie frames. This kind of operation requires extraordinary skills, patience and aesthetics, which is a great test for the operator. In recent years, the extensive use of machine learning and neural networks has made it possible for computers to intelligently process images. Since 2016, various types of generative adversarial networks models have been proposed to make deep learning shine in the fields of image style transfer, image coloring, and image style change. In this case, the experiment uses the generative adversarial networks principle to process pictures and videos to realize the automatic rendering of old documentary movies.

2018-11-19
Huang, X., Belongie, S..  2017.  Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization. 2017 IEEE International Conference on Computer Vision (ICCV). :1510–1519.

Gatys et al. recently introduced a neural algorithm that renders a content image in the style of another image, achieving so-called style transfer. However, their framework requires a slow iterative optimization process, which limits its practical application. Fast approximations with feed-forward neural networks have been proposed to speed up neural style transfer. Unfortunately, the speed improvement comes at a cost: the network is usually tied to a fixed set of styles and cannot adapt to arbitrary new styles. In this paper, we present a simple yet effective approach that for the first time enables arbitrary style transfer in real-time. At the heart of our method is a novel adaptive instance normalization (AdaIN) layer that aligns the mean and variance of the content features with those of the style features. Our method achieves speed comparable to the fastest existing approach, without the restriction to a pre-defined set of styles. In addition, our approach allows flexible user controls such as content-style trade-off, style interpolation, color & spatial controls, all using a single feed-forward neural network.

Chen, Y., Lai, Y., Liu, Y..  2017.  Transforming Photos to Comics Using Convolutional Neural Networks. 2017 IEEE International Conference on Image Processing (ICIP). :2010–2014.

In this paper, inspired by Gatys's recent work, we propose a novel approach that transforms photos to comics using deep convolutional neural networks (CNNs). While Gatys's method that uses a pre-trained VGG network generally works well for transferring artistic styles such as painting from a style image to a content image, for more minimalist styles such as comics, the method often fails to produce satisfactory results. To address this, we further introduce a dedicated comic style CNN, which is trained for classifying comic images and photos. This new network is effective in capturing various comic styles and thus helps to produce better comic stylization results. Even with a grayscale style image, Gatys's method can still produce colored output, which is not desirable for comics. We develop a modified optimization framework such that a grayscale image is guaranteed to be synthesized. To avoid converging to poor local minima, we further initialize the output image using grayscale version of the content image. Various examples show that our method synthesizes better comic images than the state-of-the-art method.

2017-12-20
Rogowski, R., Morton, M., Li, F., Monrose, F., Snow, K. Z., Polychronakis, M..  2017.  Revisiting Browser Security in the Modern Era: New Data-Only Attacks and Defenses. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :366–381.
The continuous discovery of exploitable vulnerabilitiesin popular applications (e.g., web browsers and documentviewers), along with their heightening protections against control flow hijacking, has opened the door to an oftenneglected attack strategy-namely, data-only attacks. In thispaper, we demonstrate the practicality of the threat posedby data-only attacks that harness the power of memorydisclosure vulnerabilities. To do so, we introduce memorycartography, a technique that simplifies the construction ofdata-only attacks in a reliable manner. Specifically, we showhow an adversary can use a provided memory mapping primitive to navigate through process memory at runtime, andsafely reach security-critical data that can then be modifiedat will. We demonstrate this capability by using our cross-platform memory cartography framework implementation toconstruct data-only exploits against Internet Explorer and Chrome. The outcome of these exploits ranges from simple HTTP cookie leakage, to the alteration of the same originpolicy for targeted domains, which enables the cross-originexecution of arbitrary script code. The ease with which we can undermine the security ofmodern browsers stems from the fact that although isolationpolicies (such as the same origin policy) are enforced atthe script level, these policies are not well reflected in theunderlying sandbox process models used for compartmentalization. This gap exists because the complex demands oftoday's web functionality make the goal of enforcing thesame origin policy through process isolation a difficult oneto realize in practice, especially when backward compatibility is a priority (e.g., for support of cross-origin IFRAMEs). While fixing the underlying problems likely requires a majorrefactoring of the security architecture of modern browsers(in the long term), we explore several defenses, includingglobal variable randomization, that can limit the power ofthe attacks presented herein.
2017-03-08
Sandic-Stankovic, D., Kukolj, D., Callet, P. Le.  2015.  DIBR synthesized image quality assessment based on morphological wavelets. 2015 Seventh International Workshop on Quality of Multimedia Experience (QoMEX). :1–6.

Most of the Depth Image Based Rendering (DIBR) techniques produce synthesized images which contain nonuniform geometric distortions affecting edges coherency. This type of distortions are challenging for common image quality metrics. Morphological filters maintain important geometric information such as edges across different resolution levels. In this paper, morphological wavelet peak signal-to-noise ratio measure, MW-PSNR, based on morphological wavelet decomposition is proposed to tackle the evaluation of DIBR synthesized images. It is shown that MW-PSNR achieves much higher correlation with human judgment compared to the state-of-the-art image quality measures in this context.

Sandic-Stankovic, D., Kukolj, D., Callet, P. Le.  2015.  DIBR synthesized image quality assessment based on morphological pyramids. 2015 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON). :1–4.

Most Depth Image Based Rendering (DIBR) techniques produce synthesized images which contain non-uniform geometric distortions affecting edges coherency. This type of distortions are challenging for common image quality metrics. Morphological filters maintain important geometric information such as edges across different resolution levels. There is inherent congruence between the morphological pyramid decomposition scheme and human visual perception. In this paper, multi-scale measure, morphological pyramid peak signal-to-noise ratio MP-PSNR, based on morphological pyramid decomposition is proposed for the evaluation of DIBR synthesized images. It is shown that MPPSNR achieves much higher correlation with human judgment compared to the state-of-the-art image quality measures in this context.