Biblio
Design-time analysis and verification of distributed real-time embedded systems necessitates the modeling of the time-varying performance of the network and comparing that to application requirements. Earlier work has shown how to build a system network model that abstracted away the network's physical medium and protocols which govern its access and multiplexing. In this work we show how to apply a network medium channel access protocol, such as Time-Division Multiple Access (TDMA), to our network analysis methods and use the results to show that the abstracted model without the explicit model of the protocol is valid.
Assuring communication integrity is a central problem in security. However, overhead costs associated with cryptographic primitives used towards this end introduce significant practical implementation challenges for resource-bounded systems, such as cyber-physical systems. For example, many control systems are built on legacy components which are computationally limited but have strict timing constraints. If integrity protection is a binary decision, it may simply be infeasible to introduce into such systems; without it, however, an adversary can forge malicious messages, which can cause signicant physical or financial harm. We propose a formal game-theoretic framework for optimal stochastic message authentication, providing provable integrity guarantees for resource-bounded systems based on an existing MAC scheme. We use our framework to investigate attacker deterrence, as well as optimal design of stochastic message authentication schemes when deterrence is impossible. Finally, we provide experimental results on the computational performance of our framework in practice.
While computer programs and logical theories begin by declaring the concepts of interest, be it as data types or as predicates, network computation does not allow such global declarations, and requires concept mining and concept analysis to extract shared semantics for different network nodes. Powerful semantic analysis systems have been the drivers of nearly all paradigm shifts on the web. In categorical terms, most of them can be described as bicompletions of enriched matrices, generalizing the Dedekind-MacNeille-style completions from posets to suitably enriched categories. Yet it has been well known for more than 40 years that ordinary categories themselves in general do not permit such completions. Armed with this new semantical view of Dedekind-MacNeille completions, and of matrix bicompletions, we take another look at this ancient mystery. It turns out that simple categorical versions of the limit superior and limit inferior operations characterize a general notion of Dedekind-MacNeille completion, that seems to be appropriate for ordinary categories, and boils down to the more familiar enriched versions when the limits inferior and superior coincide. This explains away the apparent gap among the completions of ordinary categories, and broadens the path towards categorical concept mining and analysis, opened in previous work.
We investigate the coverage efficiency of a sensor network consisting of sensors with circular sensing footprints of different radii. The objective is to completely cover a region in an efficient manner through a controlled (or deterministic) deployment of such sensors. In particular, it is shown that when sensing nodes of two different radii are used for complete coverage, the coverage density is increased, and the sensing cost is significantly reduced as compared to the homogeneous case, in which all nodes have the same sensing radius. Configurations of heterogeneous disks of multiple radii to achieve efficient circle coverings are presented and analyzed.