Visible to the public Biblio

Filters: Keyword is peak signal-to-noise ratio  [Clear All Filters]
2021-02-15
Rana, M. M., Mehedie, A. M. Alam, Abdelhadi, A..  2020.  Optimal Image Watermark Technique Using Singular Value Decomposition with PCA. 2020 22nd International Conference on Advanced Communication Technology (ICACT). :342–347.
Image watermarking is very important phenomenon in modern society where intellectual property right of information is necessary. Considering this impending problem, there are many image watermarking methods exist in the literature each of having some key advantages and disadvantages. After summarising state-of-the-art literature survey, an optimum digital watermark technique using singular value decomposition with principle component analysis (PCA) is proposed and verified. Basically, the host image is compressed using PCA which reduces multi-dimensional data to effective low-dimensional information. In this scheme, the watermark is embedded using the discrete wavelet transformation-singular value decomposition approach. Simulation results show that the proposed method improves the system performance compared with the existing method in terms of the watermark embedding, and extraction time. Therefore, this work is valuable for image watermarking in modern life such as tracing copyright infringements and banknote authentication.
2021-02-08
Moussa, Y., Alexan, W..  2020.  Message Security Through AES and LSB Embedding in Edge Detected Pixels of 3D Images. 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES). :224—229.

This paper proposes an advanced scheme of message security in 3D cover images using multiple layers of security. Cryptography using AES-256 is implemented in the first layer. In the second layer, edge detection is applied. Finally, LSB steganography is executed in the third layer. The efficiency of the proposed scheme is measured using a number of performance metrics. For instance, mean square error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), mean absolute error (MAE) and entropy.

2017-03-08
Moradi, M., Falahati, A., Shahbahrami, A., Zare-Hassanpour, R..  2015.  Improving visual quality in wireless capsule endoscopy images with contrast-limited adaptive histogram equalization. 2015 2nd International Conference on Pattern Recognition and Image Analysis (IPRIA). :1–5.

Wireless Capsule Endoscopy (WCE) is a noninvasive device for detection of gastrointestinal problems especially small bowel diseases, such as polyps which causes gastrointestinal bleeding. The quality of WCE images is very important for diagnosis. In this paper, a new method is proposed to improve the quality of WCE images. In our proposed method for improving the quality of WCE images, Removing Noise and Contrast Enhancement (RNCE) algorithm is used. The algorithm have been implemented and tested on some real images. Quality metrics used for performance evaluation of the proposed method is Structural Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR) and Edge Strength Similarity for Image (ESSIM). The results obtained from SSIM, PSNR and ESSIM indicate that the implemented RNCE method improve the quality of WCE images significantly.