Visible to the public Biblio

Filters: Keyword is health information  [Clear All Filters]
2023-01-05
Rojas, Aarón Joseph Serrano, Valencia, Erick Fabrizzio Paniura, Armas-Aguirre, Jimmy, Molina, Juan Manuel Madrid.  2022.  Cybersecurity maturity model for the protection and privacy of personal health data. 2022 IEEE 2nd International Conference on Advanced Learning Technologies on Education & Research (ICALTER). :1—4.
This paper proposes a cybersecurity maturity model to assess the capabilities of medical organizations to identify their level of maturity, prioritizing privacy and personal data protection. There are problems such as data breaches, the lack of security measures in health information, and the poor capacity of organizations to handle cybersecurity threats that generate concern in the health sector as they seek to mitigate risks in cyberspace. The proposal, based upon C2M2 (Cybersecurity Capability Maturity Model), incorporates practices and controls which allow organizations to identify security gaps generated through cyberattacks on sensitive health patient data. This model seeks to integrate the best practices related to privacy and protection of personal data in the Peruvian legal framework through the Administrative Directive No. 294-MINSA and the personal data protection Act No. 29733. The model consists of 3 evaluation phases. 1. Assessment planning; 2. Execution of the evaluation; 3. Implementation of improvements. The model was validated and tested in a public sector medical organization in Lima, Peru. The preliminary results showed that the organization is at Level 1 with 14% of compliance with established controls, 34% in risk, threat and vulnerability management practices and 19% in supply chain management. These the 3 highest percentages of the 10 evaluated domains.
2020-03-30
Mao, Huajian, Chi, Chenyang, Yu, Jinghui, Yang, Peixiang, Qian, Cheng, Zhao, Dongsheng.  2019.  QRStream: A Secure and Convenient Method for Text Healthcare Data Transferring. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). :3458–3462.
With the increasing of health awareness, the users become more and more interested in their daily health information and healthcare activities results from healthcare organizations. They always try to collect them together for better usage. Traditionally, the healthcare data is always delivered by paper format from the healthcare organizations, and it is not easy and convenient for data usage and management. They would have to translate these data on paper to digital version which would probably introduce mistakes into the data. It would be necessary if there is a secure and convenient method for electronic health data transferring between the users and the healthcare organizations. However, for the security and privacy problems, almost no healthcare organization provides a stable and full service for health data delivery. In this paper, we propose a secure and convenient method, QRStream, which splits original health data and loads them onto QR code frame streaming for the data transferring. The results shows that QRStream can transfer text health data smoothly with an acceptable performance, for example, transferring 10K data in 10 seconds.
2017-03-08
Xu, W., Cheung, S. c S., Soares, N..  2015.  Affect-preserving privacy protection of video. 2015 IEEE International Conference on Image Processing (ICIP). :158–162.

The prevalence of wireless networks and the convenience of mobile cameras enable many new video applications other than security and entertainment. From behavioral diagnosis to wellness monitoring, cameras are increasing used for observations in various educational and medical settings. Videos collected for such applications are considered protected health information under privacy laws in many countries. At the same time, there is an increasing need to share such video data across a wide spectrum of stakeholders including professionals, therapists and families facing similar challenges. Visual privacy protection techniques, such as blurring or object removal, can be used to mitigate privacy concern, but they also obliterate important visual cues of affect and social behaviors that are crucial for the target applications. In this paper, we propose a method of manipulating facial expression and body shape to conceal the identity of individuals while preserving the underlying affect states. The experiment results demonstrate the effectiveness of our method.