Visible to the public Biblio

Filters: Keyword is Facial features  [Clear All Filters]
2022-12-01
Srikanth, K S, Ramesh, T K, Palaniswamy, Suja, Srinivasan, Ranganathan.  2022.  XAI based model evaluation by applying domain knowledge. 2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). :1—6.
Artificial intelligence(AI) is used in decision support systems which learn and perceive features as a function of the number of layers and the weights computed during training. Due to their inherent black box nature, it is insufficient to consider accuracy, precision and recall as metrices for evaluating a model's performance. Domain knowledge is also essential to identify features that are significant by the model to arrive at its decision. In this paper, we consider a use case of face mask recognition to explain the application and benefits of XAI. Eight models used to solve the face mask recognition problem were selected. GradCAM Explainable AI (XAI) is used to explain the state-of-art models. Models that were selecting incorrect features were eliminated even though, they had a high accuracy. Domain knowledge relevant to face mask recognition viz., facial feature importance is applied to identify the model that picked the most appropriate features to arrive at the decision. We demonstrate that models with high accuracies need not be necessarily select the right features. In applications requiring rapid deployment, this method can act as a deciding factor in shortlisting models with a guarantee that the models are looking at the right features for arriving at the classification. Furthermore, the outcomes of the model can be explained to the user enhancing their confidence on the AI model being deployed in the field.
2022-06-09
Tamiya, Hiroto, Isshiki, Toshiyuki, Mori, Kengo, Obana, Satoshi, Ohki, Tetsushi.  2021.  Improved Post-quantum-secure Face Template Protection System Based on Packed Homomorphic Encryption. 2021 International Conference of the Biometrics Special Interest Group (BIOSIG). :1–5.
This paper proposes an efficient face template protection system based on homomorphic encryption. By developing a message packing method suitable for the calculation of the squared Euclidean distance, the proposed system computes the squared Euclidean distance between facial features by a single homomorphic multiplication. Our experimental results show the transaction time of the proposed system is about 14 times faster than that of the existing face template protection system based on homomorphic encryption presented in BIOSIG2020.
2021-04-08
Sarma, M. S., Srinivas, Y., Abhiram, M., Ullala, L., Prasanthi, M. S., Rao, J. R..  2017.  Insider Threat Detection with Face Recognition and KNN User Classification. 2017 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM). :39—44.
Information Security in cloud storage is a key trepidation with regards to Degree of Trust and Cloud Penetration. Cloud user community needs to ascertain performance and security via QoS. Numerous models have been proposed [2] [3] [6][7] to deal with security concerns. Detection and prevention of insider threats are concerns that also need to be tackled. Since the attacker is aware of sensitive information, threats due to cloud insider is a grave concern. In this paper, we have proposed an authentication mechanism, which performs authentication based on verifying facial features of the cloud user, in addition to username and password, thereby acting as two factor authentication. New QoS has been proposed which is capable of monitoring and detection of insider threats using Machine Learning Techniques. KNN Classification Algorithm has been used to classify users into legitimate, possibly legitimate, possibly not legitimate and not legitimate groups to verify image authenticity to conclude, whether there is any possible insider threat. A threat detection model has also been proposed for insider threats, which utilizes Facial recognition and Monitoring models. Security Method put forth in [6] [7] is honed to include threat detection QoS to earn higher degree of trust from cloud user community. As a recommendation, Threat detection module should be harnessed in private cloud deployments like Defense and Pharma applications. Experimentation has been conducted using open source Machine Learning libraries and results have been attached in this paper.
2021-03-29
John, A., MC, A., Ajayan, A. S., Sanoop, S., Kumar, V. R..  2020.  Real-Time Facial Emotion Recognition System With Improved Preprocessing and Feature Extraction. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). :1328—1333.

Human emotion recognition plays a vital role in interpersonal communication and human-machine interaction domain. Emotions are expressed through speech, hand gestures and by the movements of other body parts and through facial expression. Facial emotions are one of the most important factors in human communication that help us to understand, what the other person is trying to communicate. People understand only one-third of the message verbally, and two-third of it is through non-verbal means. There are many face emotion recognition (FER) systems present right now, but in real-life scenarios, they do not perform efficiently. Though there are many which claim to be a near-perfect system and to achieve the results in favourable and optimal conditions. The wide variety of expressions shown by people and the diversity in facial features of different people will not aid in the process of coming up with a system that is definite in nature. Hence developing a reliable system without any flaws showed by the existing systems is a challenging task. This paper aims to build an enhanced system that can analyse the exact facial expression of a user at that particular time and generate the corresponding emotion. Datasets like JAFFE and FER2013 were used for performance analysis. Pre-processing methods like facial landmark and HOG were incorporated into a convolutional neural network (CNN), and this has achieved good accuracy when compared with the already existing models.

2021-03-01
Sarathy, N., Alsawwaf, M., Chaczko, Z..  2020.  Investigation of an Innovative Approach for Identifying Human Face-Profile Using Explainable Artificial Intelligence. 2020 IEEE 18th International Symposium on Intelligent Systems and Informatics (SISY). :155–160.
Human identification is a well-researched topic that keeps evolving. Advancement in technology has made it easy to train models or use ones that have been already created to detect several features of the human face. When it comes to identifying a human face from the side, there are many opportunities to advance the biometric identification research further. This paper investigates the human face identification based on their side profile by extracting the facial features and diagnosing the feature sets with geometric ratio expressions. These geometric ratio expressions are computed into feature vectors. The last stage involves the use of weighted means to measure similarity. This research addresses the problem of using an eXplainable Artificial Intelligence (XAI) approach. Findings from this research, based on a small data-set, conclude that the used approach offers encouraging results. Further investigation could have a significant impact on how face profiles can be identified. Performance of the proposed system is validated using metrics such as Precision, False Acceptance Rate, False Rejection Rate and True Positive Rate. Multiple simulations indicate an Equal Error Rate of 0.89.
2021-01-11
Kanna, J. S. Vignesh, Raj, S. M. Ebenezer, Meena, M., Meghana, S., Roomi, S. Mansoor.  2020.  Deep Learning Based Video Analytics For Person Tracking. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). :1—6.

As the assets of people are growing, security and surveillance have become a matter of great concern today. When a criminal activity takes place, the role of the witness plays a major role in nabbing the criminal. The witness usually states the gender of the criminal, the pattern of the criminal's dress, facial features of the criminal, etc. Based on the identification marks provided by the witness, the criminal is searched for in the surveillance cameras. Surveillance cameras are ubiquitous and finding criminals from a huge volume of surveillance video frames is a tedious process. In order to automate the search process, proposed a novel smart methodology using deep learning. This method takes gender, shirt pattern, and spectacle status as input to find out the object as person from the video log. The performance of this method achieves an accuracy of 87% in identifying the person in the video frame.

2020-08-28
Pradhan, Chittaranjan, Banerjee, Debanjan, Nandy, Nabarun, Biswas, Udita.  2019.  Generating Digital Signature using Facial Landmlark Detection. 2019 International Conference on Communication and Signal Processing (ICCSP). :0180—0184.
Information security has developed rapidly over the recent years with a key being the emergence of social media. To standardize this discipline, security of an individual becomes an urgent concern. In 2019, it is estimated that there will be over 2.5 billion social media users around the globe. Unfortunately, anonymous identity has become a major concern for the security advisors. Due to the technological advancements, the phishers are able to access the confidential information. To resolve these issues numerous solutions have been proposed, such as biometric identification, facial and audio recognition etc prior access to any highly secure forum on the web. Generating digital signatures is the recent trend being incorporated in the field of digital security. We have designed an algorithm that after generating 68 point facial landmark, converts the image to a highly compressed and secure digital signature. The proposed algorithm generates a unique signature for an individual which when stored in the user account information database will limit the creation of fake or multiple accounts. At the same time the algorithm reduces the database storage overhead as it stores the facial identity of an individual in the form of a compressed textual signature rather than the traditional method where the image file was being stored, occupying lesser amount of space and making it more efficient in terms of searching, fetching and manipulation. A unique new analysis of the features produced at intermediate layers has been applied. Here, we opt to use the normal and two opposites' angular measures of the triangle as the invariance. It simply acts as the real-time optimized encryption procedure to achieve the reliable security goals explained in detail in the later sections.
Aanjanadevi, S., Palanisamy, V., Aanjankumar, S..  2019.  An Improved Method for Generating Biometric-Cryptographic System from Face Feature. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :1076—1079.
One of the most difficult tasks in networking is to provide security to data during transmission, the main issue using network is lack of security. Various techniques and methods had been introduced to satisfy the needs to enhance the firmness of the data while transmitting over internet. Due to several reasons and intruders the mechanism of providing security becomes a tedious task. At first conventional passwords are used to provide security to data while storing and transmitting but remembering the password quite confusing and difficult for the user to access the data. After that cryptography methodology is introduced to protect the data from the intruders by converting readable form of data into unreadable data by encryption process. Then the data is processed and received the receiver can access the original data by the reverse process of encryption called decryption. The processes of encoding have broken by intruders using various combinations of keys. In this proposed work strong encryption key can be generated by combining biometric and cryptography methods for enhancing firmness of data. Here biometric face image is pre-processed at initial stage then facial features are extracted to generate biometric-cryptographic key. After generating bio-crypto key data can be encrypted along with newly produced key with 0's or 1's bit combination and stored in the database. By generating bio-crypto key and using them for transmitting or storing the data the privacy and firmness of the data can be enhanced and by using own biometrics as key the process of hacking and interfere of intruders to access the data can be minimized.
2017-03-08
Sun, Z., Meng, L., Ariyaeeinia, A..  2015.  Distinguishable de-identified faces. 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). 04:1–6.

The k-anonymity approach adopted by k-Same face de-identification methods enables these methods to serve their purpose of privacy protection. However, it also forces every k original faces to share the same de-identified face, making it impossible to track individuals in a k-Same de-identified video. To address this issue, this paper presents an approach to the creation of distinguishable de-identified faces. This new approach can serve privacy protection perfectly whilst producing de-identified faces that are as distinguishable as their original faces.

Prinosil, J., Krupka, A., Riha, K., Dutta, M. K., Singh, A..  2015.  Automatic hair color de-identification. 2015 International Conference on Green Computing and Internet of Things (ICGCIoT). :732–736.

A process of de-identification used for privacy protection in multimedia content should be applied not only for primary biometric traits (face, voice) but for soft biometric traits as well. This paper deals with a proposal of the automatic hair color de-identification method working with video records. The method involves image hair area segmentation, basic hair color recognition, and modification of hair color for real-looking de-identified images.

Nakashima, Y., Koyama, T., Yokoya, N., Babaguchi, N..  2015.  Facial expression preserving privacy protection using image melding. 2015 IEEE International Conference on Multimedia and Expo (ICME). :1–6.

An enormous number of images are currently shared through social networking services such as Facebook. These images usually contain appearance of people and may violate the people's privacy if they are published without permission from each person. To remedy this privacy concern, visual privacy protection, such as blurring, is applied to facial regions of people without permission. However, in addition to image quality degradation, this may spoil the context of the image: If some people are filtered while the others are not, missing facial expression makes comprehension of the image difficult. This paper proposes an image melding-based method that modifies facial regions in a visually unintrusive way with preserving facial expression. Our experimental results demonstrated that the proposed method can retain facial expression while protecting privacy.