Biblio
Human emotion recognition plays a vital role in interpersonal communication and human-machine interaction domain. Emotions are expressed through speech, hand gestures and by the movements of other body parts and through facial expression. Facial emotions are one of the most important factors in human communication that help us to understand, what the other person is trying to communicate. People understand only one-third of the message verbally, and two-third of it is through non-verbal means. There are many face emotion recognition (FER) systems present right now, but in real-life scenarios, they do not perform efficiently. Though there are many which claim to be a near-perfect system and to achieve the results in favourable and optimal conditions. The wide variety of expressions shown by people and the diversity in facial features of different people will not aid in the process of coming up with a system that is definite in nature. Hence developing a reliable system without any flaws showed by the existing systems is a challenging task. This paper aims to build an enhanced system that can analyse the exact facial expression of a user at that particular time and generate the corresponding emotion. Datasets like JAFFE and FER2013 were used for performance analysis. Pre-processing methods like facial landmark and HOG were incorporated into a convolutional neural network (CNN), and this has achieved good accuracy when compared with the already existing models.
As the assets of people are growing, security and surveillance have become a matter of great concern today. When a criminal activity takes place, the role of the witness plays a major role in nabbing the criminal. The witness usually states the gender of the criminal, the pattern of the criminal's dress, facial features of the criminal, etc. Based on the identification marks provided by the witness, the criminal is searched for in the surveillance cameras. Surveillance cameras are ubiquitous and finding criminals from a huge volume of surveillance video frames is a tedious process. In order to automate the search process, proposed a novel smart methodology using deep learning. This method takes gender, shirt pattern, and spectacle status as input to find out the object as person from the video log. The performance of this method achieves an accuracy of 87% in identifying the person in the video frame.
The k-anonymity approach adopted by k-Same face de-identification methods enables these methods to serve their purpose of privacy protection. However, it also forces every k original faces to share the same de-identified face, making it impossible to track individuals in a k-Same de-identified video. To address this issue, this paper presents an approach to the creation of distinguishable de-identified faces. This new approach can serve privacy protection perfectly whilst producing de-identified faces that are as distinguishable as their original faces.
A process of de-identification used for privacy protection in multimedia content should be applied not only for primary biometric traits (face, voice) but for soft biometric traits as well. This paper deals with a proposal of the automatic hair color de-identification method working with video records. The method involves image hair area segmentation, basic hair color recognition, and modification of hair color for real-looking de-identified images.
An enormous number of images are currently shared through social networking services such as Facebook. These images usually contain appearance of people and may violate the people's privacy if they are published without permission from each person. To remedy this privacy concern, visual privacy protection, such as blurring, is applied to facial regions of people without permission. However, in addition to image quality degradation, this may spoil the context of the image: If some people are filtered while the others are not, missing facial expression makes comprehension of the image difficult. This paper proposes an image melding-based method that modifies facial regions in a visually unintrusive way with preserving facial expression. Our experimental results demonstrated that the proposed method can retain facial expression while protecting privacy.