Visible to the public Biblio

Filters: Keyword is face image  [Clear All Filters]
2023-07-14
Nguyen, Tuy Tan, Lee, Hanho.  2022.  Toward A Real-Time Elliptic Curve Cryptography-Based Facial Security System. 2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). :364–367.
This paper presents a novel approach for a facial security system using elliptic curve cryptography. Face images extracted from input video are encrypted before sending to a remote server. The input face images are completely encrypted by mapping each pixel value of the detected face from the input video frame to a point on an elliptic curve. The original image can be recovered when needed using the elliptic curve cryptography decryption function. Specifically, we modify point multiplication designed for projective coordinates and apply the modified approach in affine coordinates to speed up scalar point multiplication operation. Image encryption and decryption operations are also facilitated using our existing scheme. Simulation results on Visual Studio demonstrate that the proposed systems help accelerate encryption and decryption operations while maintaining information confidentiality.
2022-07-05
Sun, Lanxin, Dai, JunBo, Shen, Xunbing.  2021.  Facial emotion recognition based on LDA and Facial Landmark Detection. 2021 2nd International Conference on Artificial Intelligence and Education (ICAIE). :64—67.
Emotion recognition in the field of human-computer interaction refers to that the computer has the corresponding perceptual ability to predict the emotional state of human beings in advance by observing human expressions, behaviors and emotions, so as to ensure that computers can communicate emotionally with humans. The main research work of this paper is to extract facial image features by using Linear Discriminant Analysis (LDA) and Facial Landmark Detection after grayscale processing and cropping, and then compare the accuracy after emotion recognition and classification to determine which feature extraction method is more effective. The test results show that the accuracy rate of emotion recognition in face images can reach 73.9% by using LDA method, and 84.5% by using Facial Landmark Detection method. Therefore, facial landmarks can be used to identify emotion in face images more accurately.
2022-06-14
Dhane, Harshad, Manikandan, V. M..  2021.  A New Framework for Secure Biometric Data Transmission using Block-wise Reversible Data Hiding Through Encryption. 2021 Fifth International Conference On Intelligent Computing in Data Sciences (ICDS). :1–8.
Reversible data hiding (RDH) is an emerging area in the field of information security. The RDH schemes are widely explored in the field of cloud computing for data authentication and in medical image transmission for clinical data transmission along with medical images. The RDH schemes allow the data hider to embed sensitive information in digital content in such a way that later it can be extracted while recovering the original image. In this research, we explored the use of the RDH through the encryption scheme in a biometric authentication system. The internet of things (IoT) enabled biometric authentication systems are very common nowadays. In general, in biometric authentication, computationally complex tasks such as feature extraction and feature matching will be performed in a cloud server. The user-side devices will capture biometric data such as the face, fingerprint, or iris and it will be directly communicated to the cloud server for further processing. Since the confidentiality of biometric data needs to be maintained during the transmission, the original biometric data will be encrypted using any one of the data encryption techniques. In this manuscript, we propose the use of RDH through encryption approach to transmit two different biometric data as a single file without compromising confidentiality. The proposed scheme will ensure the integrity of the biometric data during transmission. For data hiding purposes, we have used a block-wise RDH through encryption scheme. The experimental study of the proposed scheme is carried out by embedding fingerprint data in the face images. The validation of the proposed scheme is carried out by extracting the fingerprint details from the face images during image decryption. The scheme ensures the exact recovery of face image images and fingerprint data at the receiver site.
2017-03-08
Mishra, A., Kumar, K., Rai, S. N., Mittal, V. K..  2015.  Multi-stage face recognition for biometric access. 2015 Annual IEEE India Conference (INDICON). :1–6.

Protecting the privacy of user-identification data is fundamental to protect the information systems from attacks and vulnerabilities. Providing access to such data only to the limited and legitimate users is the key motivation for `Biometrics'. In `Biometric Systems' confirming a user's claim of his/her identity reliably, is more important than focusing on `what he/she really possesses' or `what he/she remembers'. In this paper the use of face image for biometric access is proposed using two multistage face recognition algorithms that employ biometric facial features to validate the user's claim. The proposed algorithms use standard algorithms and classifiers such as EigenFaces, PCA and LDA in stages. Performance evaluation of both proposed algorithms is carried out using two standard datasets, the Extended Yale database and AT&T database. Results using the proposed multi-stage algorithms are better than those using other standard algorithms. Current limitations and possible applications of the proposed algorithms are also discussed along, with further scope of making these robust to pose, illumination and noise variations.