Visible to the public Biblio

Filters: Keyword is NDS  [Clear All Filters]
2018-01-23
Baragchizadeh, A., Karnowski, T. P., Bolme, D. S., O’Toole, A. J..  2017.  Evaluation of Automated Identity Masking Method (AIM) in Naturalistic Driving Study (NDS). 2017 12th IEEE International Conference on Automatic Face Gesture Recognition (FG 2017). :378–385.

Identity masking methods have been developed in recent years for use in multiple applications aimed at protecting privacy. There is only limited work, however, targeted at evaluating effectiveness of methods-with only a handful of studies testing identity masking effectiveness for human perceivers. Here, we employed human participants to evaluate identity masking algorithms on video data of drivers, which contains subtle movements of the face and head. We evaluated the effectiveness of the “personalized supervised bilinear regression method for Facial Action Transfer (FAT)” de-identification algorithm. We also evaluated an edge-detection filter, as an alternate “fill-in” method when face tracking failed due to abrupt or fast head motions. Our primary goal was to develop methods for humanbased evaluation of the effectiveness of identity masking. To this end, we designed and conducted two experiments to address the effectiveness of masking in preventing recognition and in preserving action perception. 1- How effective is an identity masking algorithm?We conducted a face recognition experiment and employed Signal Detection Theory (SDT) to measure human accuracy and decision bias. The accuracy results show that both masks (FAT mask and edgedetection) are effective, but that neither completely eliminated recognition. However, the decision bias data suggest that both masks altered the participants' response strategy and made them less likely to affirm identity. 2- How effectively does the algorithm preserve actions? We conducted two experiments on facial behavior annotation. Results showed that masking had a negative effect on annotation accuracy for the majority of actions, with differences across action types. Notably, the FAT mask preserved actions better than the edge-detection mask. To our knowledge, this is the first study to evaluate a deidentification method aimed at preserving facial ac- ions employing human evaluators in a laboratory setting.

2017-03-08
Paone, J., Bolme, D., Ferrell, R., Aykac, D., Karnowski, T..  2015.  Baseline face detection, head pose estimation, and coarse direction detection for facial data in the SHRP2 naturalistic driving study. 2015 IEEE Intelligent Vehicles Symposium (IV). :174–179.

Keeping a driver focused on the road is one of the most critical steps in insuring the safe operation of a vehicle. The Strategic Highway Research Program 2 (SHRP2) has over 3,100 recorded videos of volunteer drivers during a period of 2 years. This extensive naturalistic driving study (NDS) contains over one million hours of video and associated data that could aid safety researchers in understanding where the driver's attention is focused. Manual analysis of this data is infeasible; therefore efforts are underway to develop automated feature extraction algorithms to process and characterize the data. The real-world nature, volume, and acquisition conditions are unmatched in the transportation community, but there are also challenges because the data has relatively low resolution, high compression rates, and differing illumination conditions. A smaller dataset, the head pose validation study, is available which used the same recording equipment as SHRP2 but is more easily accessible with less privacy constraints. In this work we report initial head pose accuracy using commercial and open source face pose estimation algorithms on the head pose validation data set.