Biblio
In this paper, we study the security and system congestion in a risk-based checkpoint screening system with two kinds of inspection queues, named as Selectee Lanes and Normal Lanes. Based on the assessed threat value, the arrival crossing the security checkpoints is classified as either a selectee or a non-selectee. The Selectee Lanes with enhanced scrutiny are used to check selectees, while Normal Lanes are used to check non-selectees. The goal of the proposed modelling framework is to minimize the system congestion under the constraints of total security and limited budget. The system congestion of the checkpoint screening system is determined through a steady-state analysis of multi-server queueing models. By solving an optimization model, we can determine the optimal threshold for differentiating the arrivals, and determine the optimal number of security devices for each type of inspection queues. The analysis conducted in this study contributes managerial insights for understanding the operation and system performance of such risk-based checkpoint screening systems.
There are relatively fewer studies on the security-check waiting lines for screening cargo containers using queueing models. In this paper, we address two important measures at a security-check system, which are concerning the security screening effectiveness and the efficiency. The goal of this paper is to provide a modelling framework to understand the economic trade-offs embedded in container-inspection decisions. In order to analyze the policy initiatives, we develop a stylized queueing model with the novel features pertaining to the security checkpoints.