Visible to the public Biblio

Filters: Keyword is e-commerce  [Clear All Filters]
2022-11-18
Banasode, Praveen, Padmannavar, Sunita.  2021.  Evaluation of Performance for Big Data Security Using Advanced Cryptography Policy. 2021 International Conference on Forensics, Analytics, Big Data, Security (FABS). 1:1—5.
The revolution caused by the advanced analysis features of Internet of Things and big data have made a big turnaround in the digital world. Data analysis is not only limited to collect useful data but also useful in analyzing information quickly. Therefore, most of the variants of the shared system based on the parallel structural model are explored simultaneously as the appropriate big data storage library stimulates researchers’ interest in the distributed system. Due to the emerging digital technologies, different groups such as healthcare facilities, financial institutions, e-commerce, food service and supply chain management generate a surprising amount of information. Although the process of statistical analysis is essential, it can cause significant security and privacy issues. Therefore, the analysis of data privacy protection is very important. Using the platform, technology should focus on providing Advanced Cryptography Policy (ACP). This research explores different security risks, evolutionary mechanisms and risks of privacy protection. It further recommends the post-statistical modern privacy protection act to manage data privacy protection in binary format, because it is kept confidential by the user. The user authentication program has already filed access restrictions. To maintain this purpose, everyone’s attitude is to achieve a changing identity. This article is designed to protect the privacy of users and propose a new system of restoration of controls.
2022-08-26
Anastasia, Nadya, Harlili, Yulianti, Lenny Putri.  2021.  Designing Embodied Virtual Agent in E-commerce System Recommendations using Conversational Design Interaction. 2021 8th International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA). :1–6.
System recommendation is currently on the rise: more and more e-commerce rely on this feature to give more privilege to their users. However, system recommendation still faces a lot of problems that can lead to its downfall. For instance, the cold start problem and lack of privacy for user’s data in system recommendation will make the quality of this system lesser than ever. Moreover, e-commerce also faces another significant issue which is the lack of social presence. Compared to offline shopping, online shopping in e-commerce may be seen as lacking human presence and sociability as it is more impersonal, cold, automated, and generally devoid of face-to-face interactions. Hence, all of those issues mentioned above may lead to the regression of user’s trust toward e-commerce itself. This study will focus on solving those problems using conversational design interaction in the form of a Virtual Agent. This Virtual Agent can help e-commerce gather user preferences and give clear and direct information regarding the use of user’s data as well as help the user find products, promo, or similar products that they seek in e-commerce. The final result of this solution is a high fidelity prototype designed using User-Centered Design Methodology and Natural Conversational Framework. The implementation of this solution is carried out in Shopee e-commerce by modifying their product recommendation system. This prototype was measured using the usability testing method for usability goals efficient to use and user experience goals helpful.
2020-11-23
Haddad, G. El, Aïmeur, E., Hage, H..  2018.  Understanding Trust, Privacy and Financial Fears in Online Payment. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :28–36.
In online payment, customers must transmit their personal and financial information through the website to conclude their purchase and pay the services or items selected. They may face possible fears from online transactions raised by their risk perception about financial or privacy loss. They may have concerns over the payment decision with the possible negative behaviors such as shopping cart abandonment. Therefore, customers have three major players that need to be addressed in online payment: the online seller, the payment page, and their own perception. However, few studies have explored these three players in an online purchasing environment. In this paper, we focus on the customer concerns and examine the antecedents of trust, payment security perception as well as their joint effect on two fundamentally important customers' aspects privacy concerns and financial fear perception. A total of 392 individuals participated in an online survey. The results highlight the importance, of the seller website's components (such as ease of use, security signs, and quality information) and their impact on the perceived payment security as well as their impact on customer's trust and financial fear perception. The objective of our study is to design a research model that explains the factors contributing to an online payment decision.
2020-03-02
Babkin, Sergey, Epishkina, Anna.  2019.  Authentication Protocols Based on One-Time Passwords. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1794–1798.
Nowadays one-time passwords are used in a lot of areas of information technologies including e-commerce. A few vulnerabilities in authentication protocols based on one-time passwords are widely known. In current work, we analyze authentication protocols based on one-time passwords and their vulnerabilities. Both simple and complicated protocols which are implementing cryptographic algorithms are reviewed. For example, an analysis of relatively old Lamport's hash-chain protocol is provided. At the same time, we examine HOTP and TOTP protocols which are actively used nowadays. The main result of the work are conclusions about the security of reviewed protocols based on one-time passwords.
2019-12-10
Zhou, Guorui, Zhu, Xiaoqiang, Song, Chenru, Fan, Ying, Zhu, Han, Ma, Xiao, Yan, Yanghui, Jin, Junqi, Li, Han, Gai, Kun.  2018.  Deep Interest Network for Click-Through Rate Prediction. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. :1059-1068.

Click-through rate prediction is an essential task in industrial applications, such as online advertising. Recently deep learning based models have been proposed, which follow a similar Embedding&MLP paradigm. In these methods large scale sparse input features are first mapped into low dimensional embedding vectors, and then transformed into fixed-length vectors in a group-wise manner, finally concatenated together to fed into a multilayer perceptron (MLP) to learn the nonlinear relations among features. In this way, user features are compressed into a fixed-length representation vector, in regardless of what candidate ads are. The use of fixed-length vector will be a bottleneck, which brings difficulty for Embedding&MLP methods to capture user's diverse interests effectively from rich historical behaviors. In this paper, we propose a novel model: Deep Interest Network (DIN) which tackles this challenge by designing a local activation unit to adaptively learn the representation of user interests from historical behaviors with respect to a certain ad. This representation vector varies over different ads, improving the expressive ability of model greatly. Besides, we develop two techniques: mini-batch aware regularization and data adaptive activation function which can help training industrial deep networks with hundreds of millions of parameters. Experiments on two public datasets as well as an Alibaba real production dataset with over 2 billion samples demonstrate the effectiveness of proposed approaches, which achieve superior performance compared with state-of-the-art methods. DIN now has been successfully deployed in the online display advertising system in Alibaba, serving the main traffic.

2018-03-19
Greenstein-Messica, Asnat, Rokach, Lior, Friedman, Michael.  2017.  Session-Based Recommendations Using Item Embedding. Proceedings of the 22Nd International Conference on Intelligent User Interfaces. :629–633.

Recent methods for learning vector space representations of words, word embedding, such as GloVe and Word2Vec have succeeded in capturing fine-grained semantic and syntactic regularities. We analyzed the effectiveness of these methods for e-commerce recommender systems by transferring the sequence of items generated by users' browsing journey in an e-commerce website into a sentence of words. We examined the prediction of fine-grained item similarity (such as item most similar to iPhone 6 64GB smart phone) and item analogy (such as iPhone 5 is to iPhone 6 as Samsung S5 is to Samsung S6) using real life users' browsing history of an online European department store. Our results reveal that such methods outperform related models such as singular value decomposition (SVD) with respect to item similarity and analogy tasks across different product categories. Furthermore, these methods produce a highly condensed item vector space representation, item embedding, with behavioral meaning sub-structure. These vectors can be used as features in a variety of recommender system applications. In particular, we used these vectors as features in a neural network based models for anonymous user recommendation based on session's first few clicks. It is found that recurrent neural network that preserves the order of user's clicks outperforms standard neural network, item-to-item similarity and SVD (recall@10 value of 42% based on first three clicks) for this task.

2017-11-03
Upadhyaya, R., Jain, A..  2016.  Cyber ethics and cyber crime: A deep dwelved study into legality, ransomware, underground web and bitcoin wallet. 2016 International Conference on Computing, Communication and Automation (ICCCA). :143–148.

Future wars will be cyber wars and the attacks will be a sturdy amalgamation of cryptography along with malware to distort information systems and its security. The explosive Internet growth facilitates cyber-attacks. Web threats include risks, that of loss of confidential data and erosion of consumer confidence in e-commerce. The emergence of cyber hack jacking threat in the new form in cyberspace is known as ransomware or crypto virus. The locker bot waits for specific triggering events, to become active. It blocks the task manager, command prompt and other cardinal executable files, a thread checks for their existence every few milliseconds, killing them if present. Imposing serious threats to the digital generation, ransomware pawns the Internet users by hijacking their system and encrypting entire system utility files and folders, and then demanding ransom in exchange for the decryption key it provides for release of the encrypted resources to its original form. We present in this research, the anatomical study of a ransomware family that recently picked up quite a rage and is called CTB locker, and go on to the hard money it makes per user, and its source C&C server, which lies with the Internet's greatest incognito mode-The Dark Net. Cryptolocker Ransomware or the CTB Locker makes a Bitcoin wallet per victim and payment mode is in the form of digital bitcoins which utilizes the anonymity network or Tor gateway. CTB Locker is the deadliest malware the world ever encountered.

2017-05-16
Rieser, Denise Christine, Bernhard, Orlando.  2016.  Measuring Trust: The Simpler the Better? Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems. :2940–2946.

To this date the majority of the existing instruments to measure trustworthiness in an online context are based on Likert scaling [1,3,11]. These however are somewhat restricted in applicability. Statements formed in Likert scaling are typically addressing one specific website. Therefore, adjusting these statements for other websites can be accompanied with a loss of validity. To meet these limitations, we propose to use semantic differential. Research has shown that using semantic differential is appropriate to measure multidimensional constructs [8,12] such as trust. Our novel approach in measuring trustworthiness exceeds Likert based scaling in its effortless application in different online context and its better translatability. After one pre-study and two online-studies with a total of 554 participants we achieved to develop a questionnaire with nine items which is comparable to other existing questionnaires in terms of reliability and internal consistency. But it overcomes the limitation of Likert scale based questionnaire.

2017-03-08
Singh, S., Singh, N..  2015.  Internet of Things (IoT): Security challenges, business opportunities reference architecture for E-commerce. 2015 International Conference on Green Computing and Internet of Things (ICGCIoT). :1577–1581.

The Internet of Things (IoT) represents a diverse technology and usage with unprecedented business opportunities and risks. The Internet of Things is changing the dynamics of security industry & reshaping it. It allows data to be transferred seamlessly among physical devices to the Internet. The growth of number of intelligent devices will create a network rich with information that allows supply chains to assemble and communicate in new ways. The technology research firm Gartner predicts that there will be 26 billion installed units on the Internet of Things (IoT) by 2020[1]. This paper explains the concept of Internet of Things (IoT), its characteristics, explain security challenges, technology adoption trends & suggests a reference architecture for E-commerce enterprise.