Biblio
The Internet of Things (IoT) is the network where physical devices, sensors, appliances and other different objects can communicate with each other without the need for human intervention. Wireless Sensor Networks (WSNs) are main building blocks of the IoT. Both the IoT and WSNs have many critical and non-critical applications that touch almost every aspect of our modern life. Unfortunately, these networks are prone to various types of security threats. Therefore, the security of IoT and WSNs became crucial. Furthermore, the resource limitations of the devices used in these networks complicate the problem. One of the most recent and effective approaches to address such challenges is machine learning. Machine learning inspires many solutions to secure the IoT and WSNs. In this paper, we survey the different threats that can attack both IoT and WSNs and the machine learning techniques developed to counter them.
The Internet of Things (IoT) era envisions billions of interconnected devices capable of providing new interactions between the physical and digital worlds, offering new range of content and services. At the fundamental level, IoT nodes are physical devices that exist in the real world, consisting of networking, sensor, and processing components. Some application examples include mobile and pervasive computing or sensor nets, and require distributed device deployment that feed information into databases for exploitation. While the data can be centralized, there are advantages, such as system resiliency and security to adopting a decentralized architecture that pushes the computation and storage to the network edge and onto IoT devices. However, these devices tend to be much more limited in computation power than traditional racked servers. This research explores using the Cassandra distributed database on IoT-representative device specifications. Experiments conducted on both virtual machines and Raspberry Pi's to simulate IoT devices, examined latency issues with network compression, processing workloads, and various memory and node configurations in laboratory settings. We demonstrate that distributed databases are feasible on Raspberry Pi's as IoT representative devices and show findings that may help in application design.
Internet of things (IoT) is internetworking of various physical devices to provide a range of services and applications. IoT is a rapidly growing field, on an account of this; the security measurements for IoT should be at first concern. In the modern day world, the most emerging cyber-attack threat for IoT is ransomware attack. Ransomware is a kind of malware with the aim of rendering a victim's computer unusable or inaccessible, and then asking the user to pay a ransom to revert the destruction. In this paper we are evaluating ransomware attacks statistics for the past 2 years and the present year to estimate growth rate of the most emerging ransomware families from the last 3 years to evaluate most threatening ransomware attacks for IoT. Growth rate results shows that the number of attacks for Cryptowall and locky ransomware are notably increasing therefore, these ransomware families are potential threat to IoT. Moreover, we present a Cryptowall ransomware attack detection model based on the communication and behavioral study of Cryptowall for IoT environment. The proposed model observes incoming TCP/IP traffic through web proxy server then extracts TCP/IP header and uses command and control (C&C) server black listing to detect ransomware attacks.
The Internet of Things (IoT) represents a diverse technology and usage with unprecedented business opportunities and risks. The Internet of Things is changing the dynamics of security industry & reshaping it. It allows data to be transferred seamlessly among physical devices to the Internet. The growth of number of intelligent devices will create a network rich with information that allows supply chains to assemble and communicate in new ways. The technology research firm Gartner predicts that there will be 26 billion installed units on the Internet of Things (IoT) by 2020[1]. This paper explains the concept of Internet of Things (IoT), its characteristics, explain security challenges, technology adoption trends & suggests a reference architecture for E-commerce enterprise.