Visible to the public Biblio

Found 585 results

Filters: Keyword is Computer architecture  [Clear All Filters]
2015-04-30
Al-Anzi, F.S., Salman, A.A., Jacob, N.K., Soni, J..  2014.  Towards robust, scalable and secure network storage in Cloud Computing. Digital Information and Communication Technology and it's Applications (DICTAP), 2014 Fourth International Conference on. :51-55.

The term Cloud Computing is not something that appeared overnight, it may come from the time when computer system remotely accessed the applications and services. Cloud computing is Ubiquitous technology and receiving a huge attention in the scientific and industrial community. Cloud computing is ubiquitous, next generation's in-formation technology architecture which offers on-demand access to the network. It is dynamic, virtualized, scalable and pay per use model over internet. In a cloud computing environment, a cloud service provider offers “house of resources” includes applications, data, runtime, middleware, operating system, virtualization, servers, data storage and sharing and networking and tries to take up most of the overhead of client. Cloud computing offers lots of benefits, but the journey of the cloud is not very easy. It has several pitfalls along the road because most of the services are outsourced to third parties with added enough level of risk. Cloud computing is suffering from several issues and one of the most significant is Security, privacy, service availability, confidentiality, integrity, authentication, and compliance. Security is a shared responsibility of both client and service provider and we believe security must be information centric, adaptive, proactive and built in. Cloud computing and its security are emerging study area nowadays. In this paper, we are discussing about data security in cloud at the service provider end and proposing a network storage architecture of data which make sure availability, reliability, scalability and security.

Srivastava, P., Pande, S.S..  2014.  A novel architecture for identity management system using virtual appliance technology. Contemporary Computing (IC3), 2014 Seventh International Conference on. :171-175.

Identity management system has gained significance for any organization today for not only storing details of its employees but securing its sensitive information and safely managing access to its resources. This system being an enterprise based application has time taking deployment process, involving many complex and error prone steps. Also being globally used, its continuous running on servers lead to large carbon emissions. This paper proposes a novel architecture that integrates the Identity management system together with virtual appliance technology to reduce the overall deployment time of the system. It provides an Identity management system as pre-installed, pre-configured and ready to go solution that can be easily deployed even by a common user. The proposed architecture is implemented and the results have shown that there is decrease in deployment time and decrease in number of steps required in previous architecture. The hardware required by the application is also reduced as its deployed on virtual machine monitor platform, which can be installed on already used servers. This contributes to the green computing practices and gives costs benefits for enterprises. Also there is ease of migration of system from one server to another and the enterprises which do not want to depend on third party cloud for security and cost reasons, can easily deploy their identity management system in their own premises.
 

Jindal, M., Dave, M..  2014.  Data security protocol for cloudlet based architecture. Recent Advances and Innovations in Engineering (ICRAIE), 2014. :1-5.

Mobile cloud computing is a combination of mobile computing and cloud computing that provides a platform for mobile users to offload heavy tasks and data on the cloud, thus, helping them to overcome the limitations of their mobile devices. However, while utilizing the mobile cloud computing technology users lose physical control of their data; this ultimately calls for the need of a data security protocol. Although, numerous such protocols have been proposed,none of them consider a cloudlet based architecture. A cloudlet is a reliable, resource-rich computer/cluster which is well-connected to the internet and is available to nearby mobile devices. In this paper, we propose a data security protocol for a distributed cloud architecture having cloudlet integrated with the base station, using the property of perfect forward secrecy. Our protocol not only protects data from any unauthorized user, but also prevents exposure of data to the cloud owner.
 

Cerqueira Ferreira, H.G., De Sousa, R.T., Gomes de Deus, F.E., Dias Canedo, E..  2014.  Proposal of a secure, deployable and transparent middleware for Internet of Things. Information Systems and Technologies (CISTI), 2014 9th Iberian Conference on. :1-4.

This paper proposes a security architecture for an IoT transparent middleware. Focused on bringing real life objects to the virtual realm, the proposed architecture is deployable and comprises protection measures based on existent technologies for security such as AES, TLS and oAuth. This way, privacy, authenticity, integrity and confidentiality on data exchange services are integrated to provide security for generated smart objects and for involved users and services in a reliable and deployable manner.

Shropshire, J..  2014.  Analysis of Monolithic and Microkernel Architectures: Towards Secure Hypervisor Design. System Sciences (HICSS), 2014 47th Hawaii International Conference on. :5008-5017.

This research focuses on hyper visor security from holistic perspective. It centers on hyper visor architecture - the organization of the various subsystems which collectively compromise a virtualization platform. It holds that the path to a secure hyper visor begins with a big-picture focus on architecture. Unfortunately, little research has been conducted with this perspective. This study investigates the impact of monolithic and micro kernel hyper visor architectures on the size and scope of the attack surface. Six architectural features are compared: management API, monitoring interface, hyper calls, interrupts, networking, and I/O. These subsystems are core hyper visor components which could be used as attack vectors. Specific examples and three leading hyper visor platforms are referenced (ESXi for monolithic architecture; Xen and Hyper-V for micro architecture). The results describe the relative strengths and vulnerabilities of both types of architectures. It is concluded that neither design is more secure, since both incorporate security tradeoffs in core processes.

Muller, K., Sigl, G., Triquet, B., Paulitsch, M..  2014.  On MILS I/O Sharing Targeting Avionic Systems. Dependable Computing Conference (EDCC), 2014 Tenth European. :182-193.

This paper discusses strategies for I/O sharing in Multiple Independent Levels of Security (MILS) systems mostly deployed in the special environment of avionic systems. MILS system designs are promising approaches for handling the increasing complexity of functionally integrated systems, where multiple applications run concurrently on the same hardware platform. Such integrated systems, also known as Integrated Modular Avionics (IMA) in the aviation industry, require communication to remote systems located outside of the hosting hardware platform. One possible solution is to provide each partition, the isolated runtime environment of an application, a direct interface to the communication's hardware controller. Nevertheless, this approach requires a special design of the hardware itself. This paper discusses efficient system architectures for I/O sharing in the environment of high-criticality embedded systems and the exemplary analysis of Free scale's proprietary Data Path Acceleration Architecture (DPAA) with respect to generic hardware requirements. Based on this analysis we also discuss the development of possible architectures matching with the MILS approach. Even though the analysis focuses on avionics it is equally applicable to automotive architectures such as Auto SAR.

Biedermann, S., Ruppenthal, T., Katzenbeisser, S..  2014.  Data-centric phishing detection based on transparent virtualization technologies. Privacy, Security and Trust (PST), 2014 Twelfth Annual International Conference on. :215-223.

We propose a novel phishing detection architecture based on transparent virtualization technologies and isolation of the own components. The architecture can be deployed as a security extension for virtual machines (VMs) running in the cloud. It uses fine-grained VM introspection (VMI) to extract, filter and scale a color-based fingerprint of web pages which are processed by a browser from the VM's memory. By analyzing the human perceptual similarity between the fingerprints, the architecture can reveal and mitigate phishing attacks which are based on redirection to spoofed web pages and it can also detect “Man-in-the-Browser” (MitB) attacks. To the best of our knowledge, the architecture is the first anti-phishing solution leveraging virtualization technologies. We explain details about the design and the implementation and we show results of an evaluation with real-world data.

Srivastava, M..  2014.  In Sensors We Trust – A Realistic Possibility? Distributed Computing in Sensor Systems (DCOSS), 2014 IEEE International Conference on. :1-1.

Sensors of diverse capabilities and modalities, carried by us or deeply embedded in the physical world, have invaded our personal, social, work, and urban spaces. Our relationship with these sensors is a complicated one. On the one hand, these sensors collect rich data that are shared and disseminated, often initiated by us, with a broad array of service providers, interest groups, friends, and family. Embedded in this data is information that can be used to algorithmically construct a virtual biography of our activities, revealing intimate behaviors and lifestyle patterns. On the other hand, we and the services we use, increasingly depend directly and indirectly on information originating from these sensors for making a variety of decisions, both routine and critical, in our lives. The quality of these decisions and our confidence in them depend directly on the quality of the sensory information and our trust in the sources. Sophisticated adversaries, benefiting from the same technology advances as the sensing systems, can manipulate sensory sources and analyze data in subtle ways to extract sensitive knowledge, cause erroneous inferences, and subvert decisions. The consequences of these compromises will only amplify as our society increasingly complex human-cyber-physical systems with increased reliance on sensory information and real-time decision cycles.Drawing upon examples of this two-faceted relationship with sensors in applications such as mobile health and sustainable buildings, this talk will discuss the challenges inherent in designing a sensor information flow and processing architecture that is sensitive to the concerns of both producers and consumer. For the pervasive sensing infrastructure to be trusted by both, it must be robust to active adversaries who are deceptively extracting private information, manipulating beliefs and subverting decisions. While completely solving these challenges would require a new science of resilient, secure and trustworthy networked sensing and decision systems that would combine hitherto disciplines of distributed embedded systems, network science, control theory, security, behavioral science, and game theory, this talk will provide some initial ideas. These include an approach to enabling privacy-utility trade-offs that balance the tension between risk of information sharing to the producer and the value of information sharing to the consumer, and method to secure systems against physical manipulation of sensed information.

Creech, G., Jiankun Hu.  2014.  A Semantic Approach to Host-Based Intrusion Detection Systems Using Contiguousand Discontiguous System Call Patterns. Computers, IEEE Transactions on. 63:807-819.

Host-based anomaly intrusion detection system design is very challenging due to the notoriously high false alarm rate. This paper introduces a new host-based anomaly intrusion detection methodology using discontiguous system call patterns, in an attempt to increase detection rates whilst reducing false alarm rates. The key concept is to apply a semantic structure to kernel level system calls in order to reflect intrinsic activities hidden in high-level programming languages, which can help understand program anomaly behaviour. Excellent results were demonstrated using a variety of decision engines, evaluating the KDD98 and UNM data sets, and a new, modern data set. The ADFA Linux data set was created as part of this research using a modern operating system and contemporary hacking methods, and is now publicly available. Furthermore, the new semantic method possesses an inherent resilience to mimicry attacks, and demonstrated a high level of portability between different operating system versions.

2015-04-28
Creech, G., Jiankun Hu.  2014.  A Semantic Approach to Host-Based Intrusion Detection Systems Using Contiguousand Discontiguous System Call Patterns. Computers, IEEE Transactions on. 63:807-819.

Host-based anomaly intrusion detection system design is very challenging due to the notoriously high false alarm rate. This paper introduces a new host-based anomaly intrusion detection methodology using discontiguous system call patterns, in an attempt to increase detection rates whilst reducing false alarm rates. The key concept is to apply a semantic structure to kernel level system calls in order to reflect intrinsic activities hidden in high-level programming languages, which can help understand program anomaly behaviour. Excellent results were demonstrated using a variety of decision engines, evaluating the KDD98 and UNM data sets, and a new, modern data set. The ADFA Linux data set was created as part of this research using a modern operating system and contemporary hacking methods, and is now publicly available. Furthermore, the new semantic method possesses an inherent resilience to mimicry attacks, and demonstrated a high level of portability between different operating system versions.