Biblio
Phishing attacks have reached record volumes in recent years. Simultaneously, modern phishing websites are growing in sophistication by employing diverse cloaking techniques to avoid detection by security infrastructure. In this paper, we present PhishFarm: a scalable framework for methodically testing the resilience of anti-phishing entities and browser blacklists to attackers' evasion efforts. We use PhishFarm to deploy 2,380 live phishing sites (on new, unique, and previously-unseen .com domains) each using one of six different HTTP request filters based on real phishing kits. We reported subsets of these sites to 10 distinct anti-phishing entities and measured both the occurrence and timeliness of native blacklisting in major web browsers to gauge the effectiveness of protection ultimately extended to victim users and organizations. Our experiments revealed shortcomings in current infrastructure, which allows some phishing sites to go unnoticed by the security community while remaining accessible to victims. We found that simple cloaking techniques representative of real-world attacks- including those based on geolocation, device type, or JavaScript- were effective in reducing the likelihood of blacklisting by over 55% on average. We also discovered that blacklisting did not function as intended in popular mobile browsers (Chrome, Safari, and Firefox), which left users of these browsers particularly vulnerable to phishing attacks. Following disclosure of our findings, anti-phishing entities are now better able to detect and mitigate several cloaking techniques (including those that target mobile users), and blacklisting has also become more consistent between desktop and mobile platforms- but work remains to be done by anti-phishing entities to ensure users are adequately protected. Our PhishFarm framework is designed for continuous monitoring of the ecosystem and can be extended to test future state-of-the-art evasion techniques used by malicious websites.
SSL certificates are a core component of the public key infrastructure that underpins encrypted communication in the Internet. In this paper, we report the results of a longitudinal study of the characteristics of SSL certificate chains presented to clients during secure web (HTTPS) connection setup. Our data set consists of 23B SSL certificate chains collected from a global panel consisting of over 2M residential client machines over a period of 6 months. The data informing our analyses provide perspective on the entire chain of trust, including root certificates, across a wide distribution of client machines. We identify over 35M unique certificate chains with diverse relationships at all levels of the PKI hierarchy. We report on the characteristics of valid certificates, which make up 99.7% of the total corpus. We also examine invalid certificate chains, finding that 93% of them contain an untrusted root certificate and we find they have shorter average chain length than their valid counterparts. Finally, we examine two unintended but prevalent behaviors in our data: the deprecation of root certificates and secure traffic interception. Our results support aspects of prior, scan-based studies on certificate characteristics but contradict other findings, highlighting the importance of the residential client-side perspective.
The Internet of Things (IoT) market is growing rapidly, allowing continuous evolution of new technologies. Alongside this development, most IoT devices are easy to compromise, as security is often not a prioritized characteristic. This paper proposes a novel IoT Security Model (IoTSM) that can be used by organizations to formulate and implement a strategy for developing end-to-end IoT security. IoTSM is grounded by the Software Assurance Maturity Model (SAMM) framework, however it expands it with new security practices and empirical data gathered from IoT practitioners. Moreover, we generalize the model into a conceptual framework. This approach allows the formal analysis for security in general and evaluates an organization's security practices. Overall, our proposed approach can help researchers, practitioners, and IoT organizations, to discourse about IoT security from an end-to-end perspective.
Over the years cybercriminals have misused the Domain Name System (DNS) - a critical component of the Internet - to gain profit. Despite this persisting trend, little empirical information about the security of Top-Level Domains (TLDs) and of the overall 'health' of the DNS ecosystem exists. In this paper, we present security metrics for this ecosystem and measure the operational values of such metrics using three representative phishing and malware datasets. We benchmark entire TLDs against the rest of the market. We explicitly distinguish these metrics from the idea of measuring security performance, because the measured values are driven by multiple factors, not just by the performance of the particular market player. We consider two types of security metrics: occurrence of abuse and persistence of abuse. In conjunction, they provide a good understanding of the overall health of a TLD. We demonstrate that attackers abuse a variety of free services with good reputation, affecting not only the reputation of those services, but of entire TLDs. We find that, when normalized by size, old TLDs like .com host more bad content than new generic TLDs. We propose a statistical regression model to analyze how the different properties of TLD intermediaries relate to abuse counts. We find that next to TLD size, abuse is positively associated with domain pricing (i.e. registries who provide free domain registrations witness more abuse). Last but not least, we observe a negative relation between the DNSSEC deployment rate and the count of phishing domains.
Over the years cybercriminals have misused the Domain Name System (DNS) - a critical component of the Internet - to gain profit. Despite this persisting trend, little empirical information about the security of Top-Level Domains (TLDs) and of the overall 'health' of the DNS ecosystem exists. In this paper, we present security metrics for this ecosystem and measure the operational values of such metrics using three representative phishing and malware datasets. We benchmark entire TLDs against the rest of the market. We explicitly distinguish these metrics from the idea of measuring security performance, because the measured values are driven by multiple factors, not just by the performance of the particular market player. We consider two types of security metrics: occurrence of abuse and persistence of abuse. In conjunction, they provide a good understanding of the overall health of a TLD. We demonstrate that attackers abuse a variety of free services with good reputation, affecting not only the reputation of those services, but of entire TLDs. We find that, when normalized by size, old TLDs like .com host more bad content than new generic TLDs. We propose a statistical regression model to analyze how the different properties of TLD intermediaries relate to abuse counts. We find that next to TLD size, abuse is positively associated with domain pricing (i.e. registries who provide free domain registrations witness more abuse). Last but not least, we observe a negative relation between the DNSSEC deployment rate and the count of phishing domains.
Bitcoin, a peer-to-peer payment system and digital currency, is often involved in illicit activities such as scamming, ransomware attacks, illegal goods trading, and thievery. At the time of writing, the Bitcoin ecosystem has not yet been mapped and as such there is no estimate of the share of illicit activities. This paper provides the first estimation of the portion of cyber-criminal entities in the Bitcoin ecosystem. Our dataset consists of 854 observations categorised into 12 classes (out of which 5 are cybercrime-related) and a total of 100,000 uncategorised observations. The dataset was obtained from the data provider who applied three types of clustering of Bitcoin transactions to categorise entities: co-spend, intelligence-based, and behaviour-based. Thirteen supervised learning classifiers were then tested, of which four prevailed with a cross-validation accuracy of 77.38%, 76.47%, 78.46%, 80.76% respectively. From the top four classifiers, Bagging and Gradient Boosting classifiers were selected based on their weighted average and per class precision on the cybercrime-related categories. Both models were used to classify 100,000 uncategorised entities, showing that the share of cybercrime-related is 29.81% according to Bagging, and 10.95% according to Gradient Boosting with number of entities as the metric. With regard to the number of addresses and current coins held by this type of entities, the results are: 5.79% and 10.02% according to Bagging; and 3.16% and 1.45% according to Gradient Boosting.
In the past couple of years Cloud Computing has become an eminent part of the IT industry. As a result of its economic benefits more and more people are heading towards Cloud adoption. In present times there are numerous Cloud Service providers (CSP) allowing customers to host their applications and data onto Cloud. However Cloud Security continues to be the biggest obstacle in Cloud adoption and thereby prevents customers from accessing its services. Various techniques have been implemented by provides in order to mitigate risks pertaining to Cloud security. In this paper, we present a Hybrid Cryptographic System (HCS) that combines the benefits of both symmetric and asymmetric encryption thus resulting in a secure Cloud environment. The paper focuses on creating a secure Cloud ecosystem wherein we make use of multi-factor authentication along with multiple levels of hashing and encryption. The proposed system along with the algorithm are simulated using the CloudSim simulator. To this end, we illustrate the working of our proposed system along with the simulated results.
In contrast to electronic travel documents (e.g. ePassports), the standardisation of breeder documents (e.g. birth certificates), regarding harmonisation of content and contained security features is in statu nascendi. Due to the fact that breeder documents can be used as an evidence of identity and enable the application for electronic travel documents, they pose the weakest link in the identity life cycle and represent a security gap for identity management. In this work, we present a cost efficient way to enhance the long-term security of breeder documents by utilizing blockchain technology. A conceptual architecture to enhance breeder document long-term security and an introduction of the concept's constituting system components is presented. Our investigations provide evidence that the Bitcoin blockchain is most suitable for breeder document long-term security.
We introduce Active Dependency Mapping (ADM), a method for establishing dependency relations among a set of interdependent services. The approach is to artificially degrade network performance to infer which assets on the network support a particular process. Artificial degradation of the network environment could be transparent to users; run continuously it could identify dependencies that are rare or occur only at certain timescales. A useful byproduct of this dependency analysis is a quantitative assessment of the resilience and robustness of the system. This technique is intriguing for hardening both enterprise networks and cyber physical systems. We present a proof-of-concept experiment executed on a real-world set of interrelated software services. We assess the efficacy of the approach, discuss current limitations, and suggest options for future development of ADM.
All over the world, objects are increasingly connected in networks such as the Industrial Internet of Things. Interconnections, intercommunications and interactions are driving the development of an entirely new whole in the form of the Industrial Internet of Things. Communication and interaction are the norm both for separate components, such as cyber-physical systems, and for the functioning of the system as a whole. This new whole can be likened to a natural ecosystem where the process of homeostasis ensures the stability and security of the whole. Components of such an industrial ecosystem, or even an industrial ecosystem as a whole, are increasingly targeted by cyber attacks. Such attacks not only threaten the functioning of one or multiple components, they also constitute a threat to the functioning of the new whole. General systems theory can offer a scientific framework for the development of measures to improve the security and stability of both separate components and the new whole.
The QR codes have gained wide popularity in mobile marketing and advertising campaigns. However, the hidden security threat on the involved information system might endanger QR codes' success, and this issue has not been adequately addressed. In this paper we propose to examine the life cycle of a redesigned QR code ecosystem to identify the possible security risks. On top of this examination, we further propose standard changes to enhance security through a digital signature mechanism.
- « first
- ‹ previous
- 1
- 2
- 3