Visible to the public Biblio

Filters: Keyword is life cycle  [Clear All Filters]
2023-03-31
Zhang, Hongjun, Cheng, Shuyan, Cai, Qingyuan, Jiang, Xiao.  2022.  Privacy security protection based on data life cycle. 2022 World Automation Congress (WAC). :433–436.
Large capacity, fast-paced, diversified and high-value data are becoming a hotbed of data processing and research. Privacy security protection based on data life cycle is a method to protect privacy. It is used to protect the confidentiality, integrity and availability of personal data and prevent unauthorized access or use. The main advantage of using this method is that it can fully control all aspects related to the information system and its users. With the opening of the cloud, attackers use the cloud to recalculate and analyze big data that may infringe on others' privacy. Privacy protection based on data life cycle is a means of privacy protection based on the whole process of data production, collection, storage and use. This approach involves all stages from the creation of personal information by individuals (e.g. by filling out forms online or at work) to destruction after use for the intended purpose (e.g. deleting records). Privacy security based on the data life cycle ensures that any personal information collected is used only for the purpose of initial collection and destroyed as soon as possible.
ISSN: 2154-4824
2019-12-16
Zhu, Yan, Yang, Shuai, Chu, William Cheng-Chung, Feng, Rongquan.  2019.  FlashGhost: Data Sanitization with Privacy Protection Based on Frequent Colliding Hash Table. 2019 IEEE International Conference on Services Computing (SCC). :90–99.

Today's extensive use of Internet creates huge volumes of data by users in both client and server sides. Normally users don't want to store all the data in local as well as keep archive in the server. For some unwanted data, such as trash, cache and private data, needs to be deleted periodically. Explicit deletion could be applied to the local data, while it is a troublesome job. But there is no transparency to users on the personal data stored in the server. Since we have no knowledge of whether they're cached, copied and archived by the third parties, or sold by the service provider. Our research seeks to provide an automatic data sanitization system to make data could be self-destructing. Specifically, we give data a life cycle, which would be erased automatically when at the end of its life, and the destroyed data cannot be recovered by any effort. In this paper, we present FlashGhost, which is a system that meets this challenge through a novel integration of cryptography techniques with the frequent colliding hash table. In this system, data will be unreadable and rendered unrecoverable by overwriting multiple times after its validity period has expired. Besides, the system reliability is enhanced by threshold cryptography. We also present a mathematical model and verify it by a number of experiments, which demonstrate theoretically and experimentally our system is practical to use and meet the data auto-sanitization goal described above.

2017-03-08
Yin, L. R., Zhou, J., Hsu, M. K..  2015.  Redesigning QR Code Ecosystem with Improved Mobile Security. 2015 IEEE 39th Annual Computer Software and Applications Conference. 3:678–679.

The QR codes have gained wide popularity in mobile marketing and advertising campaigns. However, the hidden security threat on the involved information system might endanger QR codes' success, and this issue has not been adequately addressed. In this paper we propose to examine the life cycle of a redesigned QR code ecosystem to identify the possible security risks. On top of this examination, we further propose standard changes to enhance security through a digital signature mechanism.