Biblio
There is no doubt that security issues are on the rise and defense mechanisms are becoming one of the leading subjects for academic and industry experts. In this paper, we focus on the security domain and envision a new way of looking at the security life cycle. We utilize our vision to propose an asset-based approach to countermeasure zero day attacks. To evaluate our proposal, we built a prototype. The initial results are promising and indicate that our prototype will achieve its goal of detecting zero-day attacks.
With the rise in the underground Internet economy, automated malicious programs popularly known as malwares have become a major threat to computers and information systems connected to the internet. Properties such as self healing, self hiding and ability to deceive the security devices make these software hard to detect and mitigate. Therefore, the detection and the mitigation of such malicious software is a major challenge for researchers and security personals. The conventional systems for the detection and mitigation of such threats are mostly signature based systems. Major drawback of such systems are their inability to detect malware samples for which there is no signature available in their signature database. Such malwares are known as zero day malware. Moreover, more and more malware writers uses obfuscation technology such as polymorphic and metamorphic, packing, encryption, to avoid being detected by antivirus. Therefore, the traditional signature based detection system is neither effective nor efficient for the detection of zero-day malware. Hence to improve the effectiveness and efficiency of malware detection system we are using classification method based on structural information and behavioral specifications. In this paper we have used both static and dynamic analysis approaches. In static analysis we are extracting the features of an executable file followed by classification. In dynamic analysis we are taking the traces of executable files using NtTrace within controlled atmosphere. Experimental results obtained from our algorithm indicate that our proposed algorithm is effective in extracting malicious behavior of executables. Further it can also be used to detect malware variants.
Host-based anomaly intrusion detection system design is very challenging due to the notoriously high false alarm rate. This paper introduces a new host-based anomaly intrusion detection methodology using discontiguous system call patterns, in an attempt to increase detection rates whilst reducing false alarm rates. The key concept is to apply a semantic structure to kernel level system calls in order to reflect intrinsic activities hidden in high-level programming languages, which can help understand program anomaly behaviour. Excellent results were demonstrated using a variety of decision engines, evaluating the KDD98 and UNM data sets, and a new, modern data set. The ADFA Linux data set was created as part of this research using a modern operating system and contemporary hacking methods, and is now publicly available. Furthermore, the new semantic method possesses an inherent resilience to mimicry attacks, and demonstrated a high level of portability between different operating system versions.
Host-based anomaly intrusion detection system design is very challenging due to the notoriously high false alarm rate. This paper introduces a new host-based anomaly intrusion detection methodology using discontiguous system call patterns, in an attempt to increase detection rates whilst reducing false alarm rates. The key concept is to apply a semantic structure to kernel level system calls in order to reflect intrinsic activities hidden in high-level programming languages, which can help understand program anomaly behaviour. Excellent results were demonstrated using a variety of decision engines, evaluating the KDD98 and UNM data sets, and a new, modern data set. The ADFA Linux data set was created as part of this research using a modern operating system and contemporary hacking methods, and is now publicly available. Furthermore, the new semantic method possesses an inherent resilience to mimicry attacks, and demonstrated a high level of portability between different operating system versions.