Visible to the public Biblio

Filters: Keyword is system calls  [Clear All Filters]
2023-09-20
Haidros Rahima Manzil, Hashida, Naik S, Manohar.  2022.  DynaMalDroid: Dynamic Analysis-Based Detection Framework for Android Malware Using Machine Learning Techniques. 2022 International Conference on Knowledge Engineering and Communication Systems (ICKES). :1—6.
Android malware is continuously evolving at an alarming rate due to the growing vulnerabilities. This demands more effective malware detection methods. This paper presents DynaMalDroid, a dynamic analysis-based framework to detect malicious applications in the Android platform. The proposed framework contains three modules: dynamic analysis, feature engineering, and detection. We utilized the well-known CICMalDroid2020 dataset, and the system calls of apps are extracted through dynamic analysis. We trained our proposed model to recognize malware by selecting features obtained through the feature engineering module. Further, with these selected features, the detection module applies different Machine Learning classifiers like Random Forest, Decision Tree, Logistic Regression, Support Vector Machine, Naïve-Bayes, K-Nearest Neighbour, and AdaBoost, to recognize whether an application is malicious or not. The experiments have shown that several classifiers have demonstrated excellent performance and have an accuracy of up to 99%. The models with Support Vector Machine and AdaBoost classifiers have provided better detection accuracy of 99.3% and 99.5%, respectively.
2021-08-17
Byrnes, Jeffrey, Hoang, Thomas, Mehta, Nihal Nitin, Cheng, Yuan.  2020.  A Modern Implementation of System Call Sequence Based Host-based Intrusion Detection Systems. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :218—225.
Much research is concentrated on improving models for host-based intrusion detection systems (HIDS). Typically, such research aims at improving a model's results (e.g., reducing the false positive rate) in the familiar static training/testing environment using the standard data sources. Matching advancements in the machine learning community, researchers in the syscall HIDS domain have developed many complex and powerful syscall-based models to serve as anomaly detectors. These models typically show an impressive level of accuracy while emphasizing on minimizing the false positive rate. However, with each proposed model iteration, we get further from the setting in which these models are intended to operate. As kernels become more ornate and hardened, the implementation space for anomaly detection models is narrowing. Furthermore, the rapid advancement of operating systems and the underlying complexity introduced dictate that the sometimes decades-old datasets have long been obsolete. In this paper, we attempt to bridge the gap between theoretical models and their intended application environments by examining the recent Linux kernel 5.7.0-rc1. In this setting, we examine the feasibility of syscall-based HIDS in modern operating systems and the constraints imposed on the HIDS developer. We discuss how recent advancements to the kernel have eliminated the previous syscall trace collect method of writing syscall table wrappers, and propose a new approach to generate data and place our detection model. Furthermore, we present the specific execution time and memory constraints that models must meet in order to be operable within their intended settings. Finally, we conclude with preliminary results from our model, which primarily show that in-kernel machine learning models are feasible, depending on their complexity.
2020-04-17
Yang, Zihan, Mi, Zeyu, Xia, Yubin.  2019.  Undertow: An Intra-Kernel Isolation Mechanism for Hardware-Assisted Virtual Machines. 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE). :257—2575.
The prevalence of Cloud Computing has appealed many users to put their business into low-cost and flexible cloud servers instead of bare-metal machines. Most virtual machines in the cloud run commodity operating system(e.g., linux), and the complexity of such operating systems makes them more bug-prone and easier to be compromised. To mitigate the security threats, previous works attempt to mediate and filter system calls, transform all unpopular paths into popular paths, or implement a nested kernel along with the untrusted outter kernel to enforce certain security policies. However, such solutions only enforce read-only protection or assume that popular paths in the kernel to contain almost no bug, which is not always the case in the real world. To overcome their shortcomings and combine their advantages as much as possible, we propose a hardware-assisted isolation mechanism that isolates untrusted part of the kernel. To achieve isolation, we prepare multiple restricted Extended Page Table (EPT) during boot time, each of which has certain critical data unmapped from it so that the code executing in the isolated environment could not access sensitive data. We leverage the VMFUNC instruction already available in recent Intel processors to directly switch to another pre-defined EPT inside guest virtual machine without trapping into the underlying hypervisor, which is faster than the traditional trap-and-emulate procedure. The semantic gap is minimized and real-time check is achieved by allowing EPT violations to be converted to Virtualization Exception (VE), which could be handled inside guest kernel in non-root mode. Our preliminary evaluation shows that with hardware virtualization feature, we are able to run the untrusted code in an isolated environment with negligible overhead.
2020-02-17
Malik, Yasir, Campos, Carlos Renato Salim, Jaafar, Fehmi.  2019.  Detecting Android Security Vulnerabilities Using Machine Learning and System Calls Analysis. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :109–113.
Android operating systems have become a prime target for cyber attackers due to security vulnerabilities in the underlying operating system and application design. Recently, anomaly detection techniques are widely studied for security vulnerabilities detection and classification. However, the ability of the attackers to create new variants of existing malware using various masking techniques makes it harder to deploy these techniques effectively. In this research, we present a robust and effective vulnerabilities detection approach based on anomaly detection in a system calls of benign and malicious Android application. The anomaly in our study is type, frequency, and sequence of system calls that represent a vulnerability. Our system monitors the processes of benign and malicious application and detects security vulnerabilities based on the combination of parameters and metrics, i.e., type, frequency and sequence of system calls to classify the process behavior as benign or malign. The detection algorithm detects the anomaly based on the defined scoring function f and threshold ρ. The system refines the detection process by applying machine learning techniques to find a combination of system call metrics and explore the relationship between security bugs and the pattern of system calls detected. The experiment results show the detection rate of the proposed algorithm based on precision, recall, and f-score for different machine learning algorithms.
2018-03-26
Azzedin, F., Suwad, H., Alyafeai, Z..  2017.  Countermeasureing Zero Day Attacks: Asset-Based Approach. 2017 International Conference on High Performance Computing Simulation (HPCS). :854–857.

There is no doubt that security issues are on the rise and defense mechanisms are becoming one of the leading subjects for academic and industry experts. In this paper, we focus on the security domain and envision a new way of looking at the security life cycle. We utilize our vision to propose an asset-based approach to countermeasure zero day attacks. To evaluate our proposal, we built a prototype. The initial results are promising and indicate that our prototype will achieve its goal of detecting zero-day attacks.

2015-05-05
Kumar, S., Rama Krishna, C., Aggarwal, N., Sehgal, R., Chamotra, S..  2014.  Malicious data classification using structural information and behavioral specifications in executables. Engineering and Computational Sciences (RAECS), 2014 Recent Advances in. :1-6.

With the rise in the underground Internet economy, automated malicious programs popularly known as malwares have become a major threat to computers and information systems connected to the internet. Properties such as self healing, self hiding and ability to deceive the security devices make these software hard to detect and mitigate. Therefore, the detection and the mitigation of such malicious software is a major challenge for researchers and security personals. The conventional systems for the detection and mitigation of such threats are mostly signature based systems. Major drawback of such systems are their inability to detect malware samples for which there is no signature available in their signature database. Such malwares are known as zero day malware. Moreover, more and more malware writers uses obfuscation technology such as polymorphic and metamorphic, packing, encryption, to avoid being detected by antivirus. Therefore, the traditional signature based detection system is neither effective nor efficient for the detection of zero-day malware. Hence to improve the effectiveness and efficiency of malware detection system we are using classification method based on structural information and behavioral specifications. In this paper we have used both static and dynamic analysis approaches. In static analysis we are extracting the features of an executable file followed by classification. In dynamic analysis we are taking the traces of executable files using NtTrace within controlled atmosphere. Experimental results obtained from our algorithm indicate that our proposed algorithm is effective in extracting malicious behavior of executables. Further it can also be used to detect malware variants.

2015-04-30
Creech, G., Jiankun Hu.  2014.  A Semantic Approach to Host-Based Intrusion Detection Systems Using Contiguousand Discontiguous System Call Patterns. Computers, IEEE Transactions on. 63:807-819.

Host-based anomaly intrusion detection system design is very challenging due to the notoriously high false alarm rate. This paper introduces a new host-based anomaly intrusion detection methodology using discontiguous system call patterns, in an attempt to increase detection rates whilst reducing false alarm rates. The key concept is to apply a semantic structure to kernel level system calls in order to reflect intrinsic activities hidden in high-level programming languages, which can help understand program anomaly behaviour. Excellent results were demonstrated using a variety of decision engines, evaluating the KDD98 and UNM data sets, and a new, modern data set. The ADFA Linux data set was created as part of this research using a modern operating system and contemporary hacking methods, and is now publicly available. Furthermore, the new semantic method possesses an inherent resilience to mimicry attacks, and demonstrated a high level of portability between different operating system versions.

2015-04-28
Creech, G., Jiankun Hu.  2014.  A Semantic Approach to Host-Based Intrusion Detection Systems Using Contiguousand Discontiguous System Call Patterns. Computers, IEEE Transactions on. 63:807-819.

Host-based anomaly intrusion detection system design is very challenging due to the notoriously high false alarm rate. This paper introduces a new host-based anomaly intrusion detection methodology using discontiguous system call patterns, in an attempt to increase detection rates whilst reducing false alarm rates. The key concept is to apply a semantic structure to kernel level system calls in order to reflect intrinsic activities hidden in high-level programming languages, which can help understand program anomaly behaviour. Excellent results were demonstrated using a variety of decision engines, evaluating the KDD98 and UNM data sets, and a new, modern data set. The ADFA Linux data set was created as part of this research using a modern operating system and contemporary hacking methods, and is now publicly available. Furthermore, the new semantic method possesses an inherent resilience to mimicry attacks, and demonstrated a high level of portability between different operating system versions.