Visible to the public Biblio

Filters: Keyword is supply chain  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Ahmadi-Assalemi, Gabriela, al-Khateeb, Haider M., Epiphaniou, Gregory, Cosson, Jon, Jahankhani, Hamid, Pillai, Prashant.  2019.  Federated Blockchain-Based Tracking and Liability Attribution Framework for Employees and Cyber-Physical Objects in a Smart Workplace. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :1–9.
The systematic integration of the Internet of Things (IoT) and Cyber-Physical Systems (CPS) into the supply chain to increase operational efficiency and quality has also introduced new complexities to the threat landscape. The myriad of sensors could increase data collection capabilities for businesses to facilitate process automation aided by Artificial Intelligence (AI) but without adopting an appropriate Security-by-Design framework, threat detection and response are destined to fail. The emerging concept of Smart Workplace incorporates many CPS (e.g. Robots and Drones) to execute tasks alongside Employees both of which can be exploited as Insider Threats. We introduce and discuss forensic-readiness, liability attribution and the ability to track moving Smart SPS Objects to support modern Digital Forensics and Incident Response (DFIR) within a defence-in-depth strategy. We present a framework to facilitate the tracking of object behaviour within Smart Controlled Business Environments (SCBE) to support resilience by enabling proactive insider threat detection. Several components of the framework were piloted in a company to discuss a real-life case study and demonstrate anomaly detection and the emerging of behavioural patterns according to objects' movement with relation to their job role, workspace position and nearest entry or exit. The empirical data was collected from a Bluetooth-based Proximity Monitoring Solution. Furthermore, a key strength of the framework is a federated Blockchain (BC) model to achieve forensic-readiness by establishing a digital Chain-of-Custody (CoC) and a collaborative environment for CPS to qualify as Digital Witnesses (DW) to support post-incident investigations.
Akinrolabu, Olusola, New, Steve, Martin, Andrew.  2019.  Assessing the Security Risks of Multicloud SaaS Applications: A Real-World Case Study. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :81–88.

Cloud computing is widely believed to be the future of computing. It has grown from being a promising idea to one of the fastest research and development paradigms of the computing industry. However, security and privacy concerns represent a significant hindrance to the widespread adoption of cloud computing services. Likewise, the attributes of the cloud such as multi-tenancy, dynamic supply chain, limited visibility of security controls and system complexity, have exacerbated the challenge of assessing cloud risks. In this paper, we conduct a real-world case study to validate the use of a supply chaininclusive risk assessment model in assessing the risks of a multicloud SaaS application. Using the components of the Cloud Supply Chain Cyber Risk Assessment (CSCCRA) model, we show how the model enables cloud service providers (CSPs) to identify critical suppliers, map their supply chain, identify weak security spots within the chain, and analyse the risk of the SaaS application, while also presenting the value of the risk in monetary terms. A key novelty of the CSCCRA model is that it caters for the complexities involved in the delivery of SaaS applications and adapts to the dynamic nature of the cloud, enabling CSPs to conduct risk assessments at a higher frequency, in response to a change in the supply chain.

Alzahrani, Naif, Bulusu, Nirupama.  2018.  Block-Supply Chain: A New Anti-Counterfeiting Supply Chain Using NFC and Blockchain. Proceedings of the 1st Workshop on Cryptocurrencies and Blockchains for Distributed Systems. :30–35.
Current anti-counterfeiting supply chains rely on a centralized authority to combat counterfeit products. This architecture results in issues such as single point processing, storage, and failure. Blockchain technology has emerged to provide a promising solution for such issues. In this paper, we propose the block-supply chain, a new decentralized supply chain that detects counterfeiting attacks using blockchain and Near Field Communication (NFC) technologies. Block-supply chain replaces the centralized supply chain design and utilizes a new proposed consensus protocol that is, unlike existing protocols, fully decentralized and balances between efficiency and security. Our simulations show that the proposed protocol offers remarkable performance with a satisfactory level of security compared to the state of the art consensus protocol Tendermint.
B
Bansal, Lakshya, Chaurasia, Shefali, Sabharwal, Munish, Vij, Mohit.  2022.  Blockchain Integration with end-to-end traceability in the Food Supply Chain. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :1152—1156.
Food supply chain is a complex but necessary food production arrangement needed by the global community to maintain sustainability and food security. For the past few years, entities being a part of the food processing system have usually taken food supply chain for granted, they forget that just one disturbance in the chain can lead to poisoning, scarcity, or increased prices. This continually affects the vulnerable among society, including impoverished individuals and small restaurants/grocers. The food supply chain has been expanded across the globe involving many more entities, making the supply chain longer and more problematic making the traditional logistics pattern unable to match the expectations of customers. Food supply chains involve many challenges like lack of traceability and communication, supply of fraudulent food products and failure in monitoring warehouses. Therefore there is a need for a system that ensures authentic information about the product, a reliable trading mechanism. In this paper, we have proposed a comprehensive solution to make the supply chain consumer centric by using Blockchain. Blockchain technology in the food industry applies in a mindful and holistic manner to verify and certify the quality of food products by presenting authentic information about the products from the initial stages. The problem formulation, simulation and performance analysis are also discussed in this research work.
Bass, L., Holz, R., Rimba, P., Tran, A. B., Zhu, L..  2015.  Securing a Deployment Pipeline. 2015 IEEE/ACM 3rd International Workshop on Release Engineering. :4–7.

At the RELENG 2014 Q&A, the question was asked, “What is your greatest concern?” and the response was “someone subverting our deployment pipeline”. That is the motivation for this paper. We explore what it means to subvert a pipeline and provide several different scenarios of subversion. We then focus on the issue of securing a pipeline. As a result, we provide an engineering process that is based on having trusted components mediate access to sensitive portions of the pipeline from other components, which can remain untrusted. Applying our process to a pipeline we constructed involving Chef, Jenkins, Docker, Github, and AWS, we find that some aspects of our process result in easy to make changes to the pipeline, whereas others are more difficult. Consequently, we have developed a design that hardens the pipeline, although it does not yet completely secure it.

C
Castro, J. A. O., G, W. A. Casilimas, Ramírez, M. M. H..  2015.  Impact analysis of transport capacity and food safety in Bogota. 2015 Workshop on Engineering Applications - International Congress on Engineering (WEA). :1–7.

Food safety policies have aim to promote and develop feeding and nutrition in society. This paper presents a system dynamics model that studies the dynamic behavior between transport infrastructure and the food supply chain in the city of Bogotá. The results show that an adequate transport infrastructure is more effective to improve the service to the customer in the food supply chain. The system dynamics model allows analyze the behavior of transport infrastructure and supply chains of fruits and vegetables, groceries, meat and dairy. The study has gone some way towards enhancing our understanding of food security impact, food supply chain and transport infrastructure.

Chen, S., Wang, T., Ai, J..  2015.  A fair exchange and track system for RFID-tagged logistic chains. 2015 8th International Conference on Biomedical Engineering and Informatics (BMEI). :661–666.

RFID (Radio-Frequency IDentification) is attractive for the strong visibility it provides into logistics operations. In this paper, we explore fair-exchange techniques to encourage honest reporting of item receipt in RFID-tagged supply chains and present a fair ownership transfer system for RFID-tagged supply chains. In our system, a receiver can only access the data and/or functions of the RFID tag by providing the sender with a cryptographic attestation of successful receipt; cheating results in a defunct tag. Conversely, the sender can only obtain the receiver's attestation by providing the secret keys required to access the tag.

Coufal\'ıková, Aneta, Klaban, Ivo, \v Slajs, Tomá\v s.  2021.  Complex Strategy against Supply Chain Attacks. 2021 International Conference on Military Technologies (ICMT). :1–5.
The risk of cyber-attack is omnipresent, there are lots of threat actors in the cyber field and the number of attacks increases every day. The paper defines currently the most discussed supply chain attacks, briefly summarizes significant events of successful supply chain attacks and outlines complex strategy leading to the prevention of such attacks; the strategy which can be used not only by civil organizations but governmental ones, too. Risks of supply chain attacks against the Czech army are taken into consideration and possible mitigations are suggested.
Crouch, A., Hunter, E., Levin, P. L..  2018.  Enabling Hardware Trojan Detection and Prevention through Emulation. 2018 IEEE International Symposium on Technologies for Homeland Security (HST). :1-5.

Hardware Trojans, implantable at a myriad of points within the supply chain, are difficult to detect and identify. By emulating systems on programmable hardware, the authors have created a tool from which to create and evaluate Trojan attack signatures and therefore enable better Trojan detection (for in-service systems) and prevention (for in-design systems).

D
Das, T., Eldosouky, A. R., Sengupta, S..  2020.  Think Smart, Play Dumb: Analyzing Deception in Hardware Trojan Detection Using Game Theory. 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–8.
In recent years, integrated circuits (ICs) have become significant for various industries and their security has been given greater priority, specifically in the supply chain. Budgetary constraints have compelled IC designers to offshore manufacturing to third-party companies. When the designer gets the manufactured ICs back, it is imperative to test for potential threats like hardware trojans (HT). In this paper, a novel multi-level game-theoretic framework is introduced to analyze the interactions between a malicious IC manufacturer and the tester. In particular, the game is formulated as a non-cooperative, zero-sum, repeated game using prospect theory (PT) that captures different players' rationalities under uncertainty. The repeated game is separated into a learning stage, in which the defender learns about the attacker's tendencies, and an actual game stage, where this learning is used. Experiments show great incentive for the attacker to deceive the defender about their actual rationality by "playing dumb" in the learning stage (deception). This scenario is captured using hypergame theory to model the attacker's view of the game. The optimal deception rationality of the attacker is analytically derived to maximize utility gain. For the defender, a first-step deception mitigation process is proposed to thwart the effects of deception. Simulation results show that the attacker can profit from the deception as it can successfully insert HTs in the manufactured ICs without being detected.
Dharma Putra, Guntur, Kang, Changhoon, Kanhere, Salil S., Won-Ki Hong, James.  2022.  DeTRM: Decentralised Trust and Reputation Management for Blockchain-based Supply Chains. 2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1—5.
Blockchain has the potential to enhance supply chain management systems by providing stronger assurance in transparency and traceability of traded commodities. However, blockchain does not overcome the inherent issues of data trust in IoT enabled supply chains. Recent proposals attempt to tackle these issues by incorporating generic trust and reputation management methods, which do not entirely address the complex challenges of supply chain operations and suffers from significant drawbacks. In this paper, we propose DeTRM, a decentralised trust and reputation management solution for supply chains, which considers complex supply chain operations, such as splitting or merging of product lots, to provide a coherent trust management solution. We resolve data trust by correlating empirical data from adjacent sensor nodes, using which the authenticity of data can be assessed. We design a consortium blockchain, where smart contracts play a significant role in quantifying trustworthiness as a numerical score from different perspectives. A proof-of-concept implementation in Hyperledger Fabric shows that DeTRM is feasible and only incurs relatively small overheads compared to the baseline.
Dofe, Jaya, Gu, Peng, Stow, Dylan, Yu, Qiaoyan, Kursun, Eren, Xie, Yuan.  2017.  Security Threats and Countermeasures in Three-Dimensional Integrated Circuits. Proceedings of the on Great Lakes Symposium on VLSI 2017. :321–326.

Existing works on Three-dimensional (3D) hardware security focus on leveraging the unique 3D characteristics to address the supply chain attacks that exist in 2D design. However, 3D ICs introduce specific and unexplored challenges as well as new opportunities for managing hardware security. In this paper, we analyze new security threats unique to 3D ICs. The corresponding attack models are summarized for future research. Furthermore, existing representative countermeasures, including split manufacturing, camouflaging, transistor locking, techniques against thermal signal based side-channel attacks, and network-on-chip based shielding plane (NoCSIP) for different hardware threats are reviewed and categorized. Moreover, preliminary countermeasures are proposed to thwart TSV-based hardware Trojan insertion attacks.

E
Ezzahra, Essaber Fatima, Rachid, Benmoussa, Roland, De Guio.  2022.  Toward Lean Green Supply Chain Performance, A Risk Management Approach. 2022 14th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA). :1—6.
The purpose of this research work is to develop an approach based on risk management with a view to provide managers and decision-makers with assistance and appropriate guidelines to combine Lean and Green in a successful and integrated way. Risk cannot be managed if not well-identified; hence, a classification of supply chain risks in a Lean Green context was provided. Subsequently to risk identification an approach based on Weighted Product Method (WPM) was proposed; for risk assessment and prioritization, for its ease of use, flexibility and board adaptability. The output of this analysis provides visibility about organization's position toward desired performance and underlines crucial risks to be addressed which marks the starting point of the way to performance improvement. A case study was introduced to demonstrate the applicability and relevance of the developed framework.
G
Gamba, J., Rashed, M., Razaghpanah, A., Tapiador, J., Vallina-Rodriguez, N..  2020.  An Analysis of Pre-installed Android Software. 2020 IEEE Symposium on Security and Privacy (SP). :1039—1055.

The open-source nature of the Android OS makes it possible for manufacturers to ship custom versions of the OS along with a set of pre-installed apps, often for product differentiation. Some device vendors have recently come under scrutiny for potentially invasive private data collection practices and other potentially harmful or unwanted behavior of the preinstalled apps on their devices. Yet, the landscape of preinstalled software in Android has largely remained unexplored, particularly in terms of the security and privacy implications of such customizations. In this paper, we present the first large- scale study of pre-installed software on Android devices from more than 200 vendors. Our work relies on a large dataset of real-world Android firmware acquired worldwide using crowd-sourcing methods. This allows us to answer questions related to the stakeholders involved in the supply chain, from device manufacturers and mobile network operators to third- party organizations like advertising and tracking services, and social network platforms. Our study allows us to also uncover relationships between these actors, which seem to revolve primarily around advertising and data-driven services. Overall, the supply chain around Android's open source model lacks transparency and has facilitated potentially harmful behaviors and backdoored access to sensitive data and services without user consent or awareness. We conclude the paper with recommendations to improve transparency, attribution, and accountability in the Android ecosystem.

Guin, Ujjwal, Shi, Qihang, Forte, Domenic, Tehranipoor, Mark M..  2016.  FORTIS: A Comprehensive Solution for Establishing Forward Trust for Protecting IPs and ICs. ACM Trans. Des. Autom. Electron. Syst.. 21:63:1–63:20.

With the advent of globalization in the semiconductor industry, it is necessary to prevent unauthorized usage of third-party IPs (3PIPs), cloning and unwanted modification of 3PIPs, and unauthorized production of ICs. Due to the increasing complexity of ICs, system-on-chip (SoC) designers use various 3PIPs in their design to reduce time-to-market and development costs, which creates a trust issue between the SoC designer and the IP owners. In addition, as the ICs are fabricated around the globe, the SoC designers give fabrication contracts to offshore foundries to manufacture ICs and have little control over the fabrication process, including the total number of chips fabricated. Similarly, the 3PIP owners lack control over the number of fabricated chips and/or the usage of their IPs in an SoC. Existing research only partially addresses the problems of IP piracy and IC overproduction, and to the best of our knowledge, there is no work that considers IP overuse. In this article, we present a comprehensive solution for preventing IP piracy and IC overproduction by assuring forward trust between all entities involved in the SoC design and fabrication process. We propose a novel design flow to prevent IC overproduction and IP overuse. We use an existing logic encryption technique to obfuscate the netlist of an SoC or a 3PIP and propose a modification to enable manufacturing tests before the activation of chips which is absolutely necessary to prevent overproduction. We have used asymmetric and symmetric key encryption, in a fashion similar to Pretty Good Privacy (PGP), to transfer keys from the SoC designer or 3PIP owners to the chips. In addition, we also propose to attach an IP digest (a cryptographic hash of the entire IP) to the header of an IP to prevent modification of the IP by the SoC designers. We have shown that our approach is resistant to various attacks with the cost of minimal area overhead.

H
Hadi, Ameer Khadim, Salem, Shahad.  2021.  A proposed methodology to use a Block-chain in Supply Chain Traceability. 2021 4th International Iraqi Conference on Engineering Technology and Their Applications (IICETA). :313—317.

Increasing consumer experience and companies inner quality presents a direct demand of different requirements on supply chain traceability. Typically, existing solutions have separate data storages which eventually provide limited support when multiple individuals are included. Therefore, the block-chain-based methods are utilized to defeat these deficiencies by generating digital illustrations of real products to following several objects at the same time. Nevertheless, they actually cannot identify the change of products in manufacturing methods. The connection between components included in the production decreased, whereby the ability to follow a product’s origin reduced consequently. In this paper, a methodology is recommended which involves using a Block-chain in Supply Chain Traceability, to solve the issues of manipulations and changes in data and product source. The method aims to improve the product’s origin transparency. Block-chain technology produces a specific method of storing data into a ledger, which is raised on many end-devices such as servers or computers. Unlike centralized systems, the records of the present system are encrypted and make it difficult to be manipulated. Accordingly, this method manages the product’s traceability changes. The recommended system is performed for the cheese supply chain. The result were found to be significant in terms of increasing food security and distributors competition.

Hilt, Michael, Shao, Daniel, Yang, Baijian.  2018.  RFID Security, Verification, and Blockchain: Vulnerabilities Within the Supply Chain for Food Security. Proceedings of the 19th Annual SIG Conference on Information Technology Education. :145–145.

Over the past few decades, radio frequency identification (RFID) technology has been an important factor in securing products along the agri-food supply chain. However, there still exist security vulnerabilities when registering products to a specific RFID tag, particularly regarding the ease at which tags can be cloned. In this paper, a potential attack, labeled the "Hilt Shao attack", is identified which could occur during the initial phases of product registration, and demonstrate the type of attack using UID and CUID tags. Furthermore, a system is proposed using blockchain technology in order for the attacker to hide the cloned tag information. Results show that this attack, if carried out, can negate the profits of distributors along the supply chain, and negatively affect the consumer.

J
Jayaprasanna, M.C., Soundharya, V.A., Suhana, M., Sujatha, S..  2021.  A Block Chain based Management System for Detecting Counterfeit Product in Supply Chain. 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). :253—257.

In recent years, Counterfeit goods play a vital role in product manufacturing industries. This Phenomenon affects the sales and profit of the companies. To ensure the identification of real products throughout the supply chain, a functional block chain technology used for preventing product counterfeiting. By using a block chain technology, consumers do not need to rely on the trusted third parties to know the source of the purchased product safely. Any application that uses block chain technology as a basic framework ensures that the data content is “tamper-resistant”. In view of the fact that a block chain is the decentralized, distributed and digital ledger that stores transactional records known as blocks of the public in several databases known as chain across many networks. Therefore, any involved block cannot be changed in advance, without changing all subsequent block. In this paper, counterfeit products are detected using barcode reader, where a barcode of the product linked to a Block Chain Based Management (BCBM) system. So the proposed system may be used to store product details and unique code of that product as blocks in database. It collects the unique code from the customer and compares the code against entries in block chain database. If the code matches, it will give notification to the customer, otherwise it gets information from the customer about where they bought the product to detect counterfeit product manufacturer.

Jilcott, S..  2015.  Securing the supply chain for commodity IT devices by automated scenario generation. 2015 IEEE International Symposium on Technologies for Homeland Security (HST). :1–6.

Almost all commodity IT devices include firmware and software components from non-US suppliers, potentially introducing grave vulnerabilities to homeland security by enabling cyber-attacks via flaws injected into these devices through the supply chain. However, determining that a given device is free of any and all implementation flaws is computationally infeasible in the general case; hence a critical part of any vetting process is prioritizing what kinds of flaws are likely to enable potential adversary goals. We present Theseus, a four-year research project sponsored by the DARPA VET program. Theseus will provide technology to automatically map and explore the firmware/software (FW/SW) architecture of a commodity IT device and then generate attack scenarios for the device. From these device attack scenarios, Theseus then creates a prioritized checklist of FW/SW components to check for potential vulnerabilities. Theseus combines static program analysis, attack graph generation algorithms, and a Boolean satisfiability solver to automate the checklist generation workflow. We describe how Theseus exploits analogies between the commodity IT device problem and attack graph generation for networks. We also present a novel approach called Component Interaction Mapping to recover a formal model of a device's FW/SW architecture from which attack scenarios can be generated.

Jin, Y., Zhu, H., Shi, Z., Lu, X., Sun, L..  2015.  Cryptanalysis and improvement of two RFID-OT protocols based on quadratic residues. 2015 IEEE International Conference on Communications (ICC). :7234–7239.

The ownership transfer of RFID tag means a tagged product changes control over the supply chain. Recently, Doss et al. proposed two secure RFID tag ownership transfer (RFID-OT) protocols based on quadratic residues. However, we find that they are vulnerable to the desynchronization attack. The attack is probabilistic. As the parameters in the protocols are adopted, the successful probability is 93.75%. We also show that the use of the pseudonym of the tag h(TID) and the new secret key KTID are not feasible. In order to solve these problems, we propose the improved schemes. Security analysis shows that the new protocols can resist in the desynchronization attack and other attacks. By optimizing the performance of the new protocols, it is more practical and feasible in the large-scale deployment of RFID tags.

K
Kandera, Branislav, Holoda, Šimon, Jančík, Marián, Melníková, Lucia.  2022.  Supply Chain Risks Assessment of selected EUROCONTROL’s surveillance products. 2022 New Trends in Aviation Development (NTAD). :86–89.
Cybersecurity is without doubt becoming a societal challenge. It even starts to affect sectors that were not considered to be at risk in the past because of their relative isolation. One of these sectors is aviation in general, and specifically air traffic management. Nowadays, the cyber security is one of the essential issues of current Air Traffic Systems. Compliance with the basic principles of cyber security is mandated by European Union law as well as the national law. Therefore, EUROCONTROL as the provider of several tools or services (ARTAS, EAD, SDDS, etc.), is regularly conducting various activities, such as the cyber-security assessments, penetration testing, supply chain risk assessment, in order to maintain and improve persistence of the products against the cyber-attacks.
Khayyam, Y. E., Herrou, B..  2017.  Risk assessment of the supply chain: Approach based on analytic hierarchy process and group decision-making. 2017 International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA). :135–141.

Faced with a turbulent economic, political and social environment, Companies need to build effective risk management systems in their supply chains. Risk management can only be effective when the risks identification and analysis are enough accurate. In this perspective, this paper proposes a risk assessment approach based on the analytic hierarchy process and group decision making. In this study, a new method is introduced that will reduce the impact of incoherent judgments on group decision-making, It is, the “reduced weight function” that decreases the weight associated to a member of the expert panel based on the consistency of its judgments.

Kieras, Timothy, Farooq, Muhammad Junaid, Zhu, Quanyan.  2020.  Modeling and Assessment of IoT Supply Chain Security Risks: The Role of Structural and Parametric Uncertainties. 2020 IEEE Security and Privacy Workshops (SPW). :163—170.

Supply chain security threats pose new challenges to security risk modeling techniques for complex ICT systems such as the IoT. With established techniques drawn from attack trees and reliability analysis providing needed points of reference, graph-based analysis can provide a framework for considering the role of suppliers in such systems. We present such a framework here while highlighting the need for a component-centered model. Given resource limitations when applying this model to existing systems, we study various classes of uncertainties in model development, including structural uncertainties and uncertainties in the magnitude of estimated event probabilities. Using case studies, we find that structural uncertainties constitute a greater challenge to model utility and as such should receive particular attention. Best practices in the face of these uncertainties are proposed.

Kieras, Timothy, Farooq, Muhammad Junaid, Zhu, Quanyan.  2020.  RIoTS: Risk Analysis of IoT Supply Chain Threats. 2020 IEEE 6th World Forum on Internet of Things (WF-IoT). :1—6.
Securing the supply chain of information and communications technology (ICT) has recently emerged as a critical concern for national security and integrity. With the proliferation of Internet of Things (IoT) devices and their increasing role in controlling real world infrastructure, there is a need to analyze risks in networked systems beyond established security analyses. Existing methods in literature typically leverage attack and fault trees to analyze malicious activity and its impact. In this paper, we develop RIoTS, a security risk assessment framework borrowing from system reliability theory to incorporate the supply chain. We also analyze the impact of grouping within suppliers that may pose hidden risks to the systems from malicious supply chain actors. The results show that the proposed analysis is able to reveal hidden threats posed to the IoT ecosystem from potential supplier collusion.
Kusrini, Elisa, Anggarani, Iga, Praditya, Tifa Ayu.  2021.  Analysis of Supply Chain Security Management Systems Based on ISO 28001: 2007: Case Study Leather Factory in Indonesia. 2021 IEEE 8th International Conference on Industrial Engineering and Applications (ICIEA). :471—477.
The international Supply Chains (SC) have expanded rapidly over the decades and also consist of many entities and business partners. The increasing complexity of supply chain makes it more vulnerable to a security threat. Therefore, it is necessary to evaluate security management systems to ensure the flow of goods in SC. In this paper we used international standards to assess the security of the company's supply chain compliance with ISO 28001. Supply chain security that needs to be assessed includes all inbound logistics activities to outbound logistics. The aim of this research is to analyse the security management system by identifying security threat, consequences, and likelihood to develop adequate countermeasures for the security of the company's supply chain. Security risk assessment was done using methodology compliance with ISO 28001 which are identify scope of security assessment, conduct security assessment, list applicable threat scenario, determine consequences, determine likelihood, determine risk score, risk evaluation using risk matrix, determine counter measures, and estimation of risk matrix after countermeasures. This research conducted in one of the leather factory in Indonesia. In this research we divided security threat into five category: asset security, personnel security, information security, goods and conveyance security, and closed cargo transport units. The security assessment was conducted by considering the performance review according to ISO 28001: 2007 and the results show that there are 22 security threat scenarios in the company's supply chain. Based upon a system of priorities by risk score, countermeasures are designed to reduce the threat into acceptable level.