Visible to the public Biblio

Filters: Keyword is privacy challenges  [Clear All Filters]
2020-08-17
Girgenti, Benedetto, Perazzo, Pericle, Vallati, Carlo, Righetti, Francesca, Dini, Gianluca, Anastasi, Giuseppe.  2019.  On the Feasibility of Attribute-Based Encryption on Constrained IoT Devices for Smart Systems. 2019 IEEE International Conference on Smart Computing (SMARTCOMP). :225–232.
The Internet of Things (IoT) is enabling a new generation of innovative services based on the seamless integration of smart objects into information systems. Such IoT devices generate an uninterrupted flow of information that can be transmitted through an untrusted network and stored on an untrusted infrastructure. The latter raises new security and privacy challenges that require novel cryptographic methods. Attribute-Based Encryption (ABE) is a new type of public-key encryption that enforces a fine-grained access control on encrypted data based on flexible access policies. The feasibility of ABE adoption in fully-fledged computing systems, i.e. smartphones or embedded systems, has been demonstrated in recent works. In this paper we assess the feasibility of the adoption of ABE in typical IoT constrained devices, characterized by limited capabilities in terms of computing, storage and power. Specifically, an implementation of three ABE schemes for ESP32, a low-cost popular platform to deploy IoT devices, is developed and evaluated in terms of encryption/decryption time and energy consumption. The performance evaluation shows that the adoption of ABE on constrained devices is feasible, although it has a cost that increases with the number of attributes. The analysis in particular highlights how ABE has a significant impact in the lifetime of battery-powered devices, which is impaired significantly when a high number of attributes is adopted.
2020-04-03
Song, Liwei, Shokri, Reza, Mittal, Prateek.  2019.  Membership Inference Attacks Against Adversarially Robust Deep Learning Models. 2019 IEEE Security and Privacy Workshops (SPW). :50—56.
In recent years, the research community has increasingly focused on understanding the security and privacy challenges posed by deep learning models. However, the security domain and the privacy domain have typically been considered separately. It is thus unclear whether the defense methods in one domain will have any unexpected impact on the other domain. In this paper, we take a step towards enhancing our understanding of deep learning models when the two domains are combined together. We do this by measuring the success of membership inference attacks against two state-of-the-art adversarial defense methods that mitigate evasion attacks: adversarial training and provable defense. On the one hand, membership inference attacks aim to infer an individual's participation in the target model's training dataset and are known to be correlated with target model's overfitting. On the other hand, adversarial defense methods aim to enhance the robustness of target models by ensuring that model predictions are unchanged for a small area around each sample in the training dataset. Intuitively, adversarial defenses may rely more on the training dataset and be more vulnerable to membership inference attacks. By performing empirical membership inference attacks on both adversarially robust models and corresponding undefended models, we find that the adversarial training method is indeed more susceptible to membership inference attacks, and the privacy leakage is directly correlated with model robustness. We also find that the provable defense approach does not lead to enhanced success of membership inference attacks. However, this is achieved by significantly sacrificing the accuracy of the model on benign data points, indicating that privacy, security, and prediction accuracy are not jointly achieved in these two approaches.
2017-11-13
Moldovan, G., Tragos, E. Z., Fragkiadakis, A., Pohls, H. C., Calvo, D..  2016.  An IoT Middleware for Enhanced Security and Privacy: The RERUM Approach. 2016 8th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.

The Internet of Things (IoT) presents itself as a promising set of key technologies to provide advanced smart applications. IoT has become a major trend lately and smart solutions can be found in a large variety of products. Since it provides a flexible and easy way to gather data from huge numbers of devices and exploit them ot provide new applications, it has become a central research area lately. However, due to the fact that IoT aims to interconnect millions of constrained devices that are monitoring the everyday life of people, acting upon physical objects around them, the security and privacy challenges are huge. Nevertheless, only lately the research focus has been on security and privacy solutions. Many solutions and IoT frameworks have only a minimum set of security, which is a basic access control. The EU FP7 project RERUM has a main focus on designing an IoT architecture based on the concepts of Security and Privacy by design. A central part of RERUM is the implementation of a middleware layer that provides extra functionalities for improved security and privacy. This work, presents the main elements of the RERUM middleware, which is based on the widely accepted OpenIoT middleware.

2017-03-08
Yang, K., Forte, D., Tehranipoor, M. M..  2015.  Protecting endpoint devices in IoT supply chain. 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :351–356.

The Internet of Things (IoT), an emerging global network of uniquely identifiable embedded computing devices within the existing Internet infrastructure, is transforming how we live and work by increasing the connectedness of people and things on a scale that was once unimaginable. In addition to increased communication efficiency between connected objects, the IoT also brings new security and privacy challenges. Comprehensive measures that enable IoT device authentication and secure access control need to be established. Existing hardware, software, and network protection methods, however, are designed against fraction of real security issues and lack the capability to trace the provenance and history information of IoT devices. To mitigate this shortcoming, we propose an RFID-enabled solution that aims at protecting endpoint devices in IoT supply chain. We take advantage of the connection between RFID tag and control chip in an IoT device to enable data transfer from tag memory to centralized database for authentication once deployed. Finally, we evaluate the security of our proposed scheme against various attacks.