Visible to the public Biblio

Filters: Keyword is secure access control  [Clear All Filters]
2021-01-11
Dikii, D. I..  2020.  Remote Access Control Model for MQTT Protocol. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :288–291.
The author considers the Internet of Things security problems, namely, the organization of secure access control when using the MQTT protocol. Security mechanisms and methods that are employed or supported by the MQTT protocol have been analyzed. Thus, the protocol employs authentication by the login and password. In addition, it supports cryptographic processing over transferring data via the TLS protocol. Third-party services on OAuth protocol can be used for authentication. The authorization takes place by configuring the ACL-files or via third-party services and databases. The author suggests a device discretionary access control model of machine-to-machine interaction under the MQTT protocol, which is based on the HRU-model. The model entails six operators: the addition and deletion of a subject, the addition and deletion of an object, the addition and deletion of access privileges. The access control model is presented in a form of an access matrix and has three types of privileges: read, write, ownership. The model is composed in a way that makes it compatible with the protocol of a widespread version v3.1.1. The available types of messages in the MQTT protocol allow for the adjustment of access privileges. The author considered an algorithm with such a service data unit build that the unit could easily be distinguished in the message body. The implementation of the suggested model will lead to the minimization of administrator's involvement due to the possibility for devices to determine access privileges to the information resource without human involvement. The author suggests recommendations for security policies, when organizing an informational exchange in accordance with the MQTT protocol.
2020-08-17
He, Peixuan, Xue, Kaiping, Xu, Jie, Xia, Qiudong, Liu, Jianqing, Yue, Hao.  2019.  Attribute-Based Accountable Access Control for Multimedia Content with In-Network Caching. 2019 IEEE International Conference on Multimedia and Expo (ICME). :778–783.
Nowadays, multimedia content retrieval has become the major service requirement of the Internet and the traffic of these contents has dominated the IP traffic. To reduce the duplicated traffic and improve the performance of distributing massive volumes of multimedia contents, in-network caching has been proposed recently. However, because in-network content caching can be directly utilized to respond users' requests, multimedia content retrieval is beyond content providers' control and makes it hard for them to implement access control and service accounting. In this paper, we propose an attribute-based accountable access control scheme for multimedia content distribution while making the best of in-network caching, in which content providers can be fully offline. In our scheme, the attribute-based encryption at multimedia content provider side and access policy based authentication at the edge router side jointly ensure the secure access control, which is also efficient in both space and time. Besides, secure service accounting is implemented by letting edge routers collect service credentials generated during users' request process. Through the informal security analysis, we prove the security of our scheme. Simulation results demonstrate that our scheme is efficient with acceptable overhead.
2020-03-18
Djoko, Judicael B., Lange, Jack, Lee, Adam J..  2019.  NeXUS: Practical and Secure Access Control on Untrusted Storage Platforms using Client-Side SGX. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :401–413.

With the rising popularity of file-sharing services such as Google Drive and Dropbox in the workflows of individuals and corporations alike, the protection of client-outsourced data from unauthorized access or tampering remains a major security concern. Existing cryptographic solutions to this problem typically require server-side support, involve non-trivial key management on the part of users, and suffer from severe re-encryption penalties upon access revocations. This combination of performance overheads and management burdens makes this class of solutions undesirable in situations where performant, platform-agnostic, dynamic sharing of user content is required. We present NEXUS, a stackable filesystem that leverages trusted hardware to provide confidentiality and integrity for user files stored on untrusted platforms. NEXUS is explicitly designed to balance security, portability, and performance: it supports dynamic sharing of protected volumes on any platform exposing a file access API without requiring server-side support, enables the use of fine-grained access control policies to allow for selective sharing, and avoids the key revocation and file re-encryption overheads associated with other cryptographic approaches to access control. This combination of features is made possible by the use of a client-side Intel SGX enclave that is used to protect and share NEXUS volumes, ensuring that cryptographic keys never leave enclave memory and obviating the need to reencrypt files upon revocation of access rights. We implemented a NEXUS prototype that runs on top of the AFS filesystem and show that it incurs ×2 overhead for a variety of common file and database operations.

2017-03-08
Yang, K., Forte, D., Tehranipoor, M. M..  2015.  Protecting endpoint devices in IoT supply chain. 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :351–356.

The Internet of Things (IoT), an emerging global network of uniquely identifiable embedded computing devices within the existing Internet infrastructure, is transforming how we live and work by increasing the connectedness of people and things on a scale that was once unimaginable. In addition to increased communication efficiency between connected objects, the IoT also brings new security and privacy challenges. Comprehensive measures that enable IoT device authentication and secure access control need to be established. Existing hardware, software, and network protection methods, however, are designed against fraction of real security issues and lack the capability to trace the provenance and history information of IoT devices. To mitigate this shortcoming, we propose an RFID-enabled solution that aims at protecting endpoint devices in IoT supply chain. We take advantage of the connection between RFID tag and control chip in an IoT device to enable data transfer from tag memory to centralized database for authentication once deployed. Finally, we evaluate the security of our proposed scheme against various attacks.