Biblio
Almost all commodity IT devices include firmware and software components from non-US suppliers, potentially introducing grave vulnerabilities to homeland security by enabling cyber-attacks via flaws injected into these devices through the supply chain. However, determining that a given device is free of any and all implementation flaws is computationally infeasible in the general case; hence a critical part of any vetting process is prioritizing what kinds of flaws are likely to enable potential adversary goals. We present Theseus, a four-year research project sponsored by the DARPA VET program. Theseus will provide technology to automatically map and explore the firmware/software (FW/SW) architecture of a commodity IT device and then generate attack scenarios for the device. From these device attack scenarios, Theseus then creates a prioritized checklist of FW/SW components to check for potential vulnerabilities. Theseus combines static program analysis, attack graph generation algorithms, and a Boolean satisfiability solver to automate the checklist generation workflow. We describe how Theseus exploits analogies between the commodity IT device problem and attack graph generation for networks. We also present a novel approach called Component Interaction Mapping to recover a formal model of a device's FW/SW architecture from which attack scenarios can be generated.