Visible to the public Biblio

Filters: Keyword is congestion  [Clear All Filters]
2022-08-26
LaMar, Suzanna, Gosselin, Jordan J, Caceres, Ivan, Kapple, Sarah, Jayasumana, Anura.  2021.  Congestion Aware Intent-Based Routing using Graph Neural Networks for Improved Quality of Experience in Heterogeneous Networks. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :477—481.
Making use of spectrally diverse communications links to re-route traffic in response to dynamic environments to manage network bottlenecks has become essential in order to guarantee message delivery across heterogeneous networks. We propose an innovative, proactive Congestion Aware Intent-Based Routing (CONAIR) architecture that can select among available communication link resources based on quality of service (QoS) metrics to support continuous information exchange between networked participants. The CONAIR architecture utilizes a Network Controller (NC) and artificial intelligence (AI) to re-route traffic based on traffic priority, fundamental to increasing end user quality of experience (QoE) and mission effectiveness. The CONAIR architecture provides network behavior prediction, and can mitigate congestion prior to its occurrence unlike traditional static routing techniques, e.g. Open Shortest Path First (OSPF), which are prone to congestion due to infrequent routing table updates. Modeling and simulation (M&S) was performed on a multi-hop network in order to characterize the resiliency and scalability benefits of CONAIR over OSPF routing-based frameworks. Results demonstrate that for varying traffic profiles, packet loss and end-to-end latency is minimized.
2021-09-07
Zhang, Xinghai, Zhuang, Zhen, Liu, Genggeng, Huang, Xing, Liu, Wen-Hao, Guo, Wenzhong, Wang, Ting-Chi.  2020.  MiniDelay: Multi-Strategy Timing-Aware Layer Assignment for Advanced Technology Nodes. 2020 Design, Automation Test in Europe Conference Exhibition (DATE). :586–591.
Layer assignment, a major step in global routing of integrated circuits, is usually performed to assign segments of nets to multiple layers. Besides the traditional optimization goals such as overflow and via count, interconnect delay plays an important role in determining chip performance and has been attracting much attention in recent years. Accordingly, in this paper, we propose MiniDelay, a timing-aware layer assignment algorithm to minimize delay for advanced technology nodes, taking both wire congestion and coupling effect into account. MiniDelay consists of the following three key techniques: 1) a non-default-rule routing technique is adopted to reduce the delay of timing critical nets, 2) an effective congestion assessment method is proposed to optimize delay of nets and via count simultaneously, and 3) a net scalpel technique is proposed to further reduce the maximum delay of nets, so that the chip performance can be improved in a global manner. Experimental results on multiple benchmarks confirm that the proposed algorithm leads to lower delay and few vias, while achieving the best solution quality among the existing algorithms with the shortest runtime.
2017-03-08
Wang, C. H..  2015.  A Modelling Framework for Managing Risk-Based Checkpoint Screening Systems with Two-Type Inspection Queues. 2015 Third International Conference on Robot, Vision and Signal Processing (RVSP). :220–223.

In this paper, we study the security and system congestion in a risk-based checkpoint screening system with two kinds of inspection queues, named as Selectee Lanes and Normal Lanes. Based on the assessed threat value, the arrival crossing the security checkpoints is classified as either a selectee or a non-selectee. The Selectee Lanes with enhanced scrutiny are used to check selectees, while Normal Lanes are used to check non-selectees. The goal of the proposed modelling framework is to minimize the system congestion under the constraints of total security and limited budget. The system congestion of the checkpoint screening system is determined through a steady-state analysis of multi-server queueing models. By solving an optimization model, we can determine the optimal threshold for differentiating the arrivals, and determine the optimal number of security devices for each type of inspection queues. The analysis conducted in this study contributes managerial insights for understanding the operation and system performance of such risk-based checkpoint screening systems.