Biblio
Big data is the next frontier for modernization, rivalry, and profitability. It is the foundation of all the major trends such as social networks, mobile devices, healthcare, stock markets etc. Big data is efficiently stored in the cloud because of its high-volume, high-speed and high-assortment data resources. An unauthorized user access control is the gravest threat of huge information in the cloud environment because of the remote file storage. Attribute Based Encryption (ABE) is an efficient access control procedure to guarantee end-to-end security for huge information in the cloud. Most often existing ABE working principle is based on bilinear pairing. In this paper, we construct a peculiar ABE for big data in the cloud. Our proposed scheme is based on quadratic residue and attribute union which is based on fundamental arithmetic theorem.
The ownership transfer of RFID tag means a tagged product changes control over the supply chain. Recently, Doss et al. proposed two secure RFID tag ownership transfer (RFID-OT) protocols based on quadratic residues. However, we find that they are vulnerable to the desynchronization attack. The attack is probabilistic. As the parameters in the protocols are adopted, the successful probability is 93.75%. We also show that the use of the pseudonym of the tag h(TID) and the new secret key KTID are not feasible. In order to solve these problems, we propose the improved schemes. Security analysis shows that the new protocols can resist in the desynchronization attack and other attacks. By optimizing the performance of the new protocols, it is more practical and feasible in the large-scale deployment of RFID tags.