Visible to the public Biblio

Filters: Keyword is Transfer functions  [Clear All Filters]
2023-07-11
Yarlagadda, Venu, Garikapati, Annapurna Karthika, Gadupudi, Lakshminarayana, Kapoor, Rashmi, Veeresham, K..  2022.  Comparative Analysis of STATCOM and SVC on Power System Dynamic Response and Stability Margins with time and frequency responses using Modelling. 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). :1—8.
To ensure dynamic and transient angle and load stability in order to maintain the power system security is a major task of the power Engineer. FACTS Controllers are most effective devices to ensure system security by enhancing the stability margins with reactive power support all over the power system network. The major shunt compensation devices of FACTS are SVC and STATCOM. This article dispenses the modelling and simulation of both the shunt devices viz. Oneis the Static Synchronous Compensator (STATCOM) and the other is Static Var Compensator (SVC). The small signal models of these devices have been derived from the first principles and obtained the transfer function models of weak and strong power systems. The weak power system has the Short Circuit Ratio (SCR) is about less than 3 and that of the strong power system has the SCR of more than 5. The performance of the both weak and strong power systems has been evaluated with time and frequency responses. The dynamic response is obtained with the exact models for both weak and strong systems, subsequently the root locus plots as well as bode plots have been obtained with MATLAB Programs and evaluated the performance of these devices and comparison is made. The Stability margins of both the systems with SVC and STATCOM have been obtained from the bode plots. The dynamic behaviour of the both kinds of power systems have been assessed with time responses of SVC and STATCOM models. All of these results viz. dynamic response, root locus and bode plots proves the superiority of the STATCOM over SVC with indices, viz. peak overshoot, settling time, gain margin and phase margins. The dynamic, steady state performance indices obtained from time response and bode plots proves the superior performance of STATCOM.
2023-01-05
Jovanovic, Dijana, Marjanovic, Marina, Antonijevic, Milos, Zivkovic, Miodrag, Budimirovic, Nebojsa, Bacanin, Nebojsa.  2022.  Feature Selection by Improved Sand Cat Swarm Optimizer for Intrusion Detection. 2022 International Conference on Artificial Intelligence in Everything (AIE). :685–690.
The rapid growth of number of devices that are connected to internet of things (IoT) networks, increases the severity of security problems that need to be solved in order to provide safe environment for network data exchange. The discovery of new vulnerabilities is everyday challenge for security experts and many novel methods for detection and prevention of intrusions are being developed for dealing with this issue. To overcome these shortcomings, artificial intelligence (AI) can be used in development of advanced intrusion detection systems (IDS). This allows such system to adapt to emerging threats, react in real-time and adjust its behavior based on previous experiences. On the other hand, the traffic classification task becomes more difficult because of the large amount of data generated by network systems and high processing demands. For this reason, feature selection (FS) process is applied to reduce data complexity by removing less relevant data for the active classification task and therefore improving algorithm's accuracy. In this work, hybrid version of recently proposed sand cat swarm optimizer algorithm is proposed for feature selection with the goal of increasing performance of extreme learning machine classifier. The performance improvements are demonstrated by validating the proposed method on two well-known datasets - UNSW-NB15 and CICIDS-2017, and comparing the results with those reported for other cutting-edge algorithms that are dealing with the same problems and work in a similar configuration.
2021-12-20
Masuda, Sora, Itani, Shunji, Kajikawa, Yoshinobu, Kita, Shunsuke.  2021.  A Study on Personal Authentication System Using Pinna Related Transfer Function and Other Sensor Information. 2021 20th International Symposium on Communications and Information Technologies (ISCIT). :70–73.
In recent years, biometric authentication, such as fingerprint and face recognition, has become widespread in smartphones. However, fingerprint and face authentication have the problem that they cannot be used depending on the condition of the user's fingers or face. Therefore, we have been investigating a new biometric authentication system using pinna as a personal authentication system for smart phones. We have studied a personal authentication system using the Pinna Related Transfer Function (PRTF), which is an acoustic transfer function measured from the pinna. However, since the position of the smartphone changes every time it is placed on the ear, there is a problem that the authentication rate decreases. In this paper, we propose a multimodal personal authentication system using PRTF, pinna images, and smartphone location information, and verify its effectiveness. The results show that the proposed authentication system can improve the robustness against the fluctuation of the smartphone location.
2020-05-08
Hafeez, Azeem, Topolovec, Kenneth, Awad, Selim.  2019.  ECU Fingerprinting through Parametric Signal Modeling and Artificial Neural Networks for In-vehicle Security against Spoofing Attacks. 2019 15th International Computer Engineering Conference (ICENCO). :29—38.
Fully connected autonomous vehicles are more vulnerable than ever to hacking and data theft. The controller area network (CAN) protocol is used for communication between in-vehicle control networks (IVN). The absence of basic security features of this protocol, like message authentication, makes it quite vulnerable to a wide range of attacks including spoofing attacks. As traditional cybersecurity methods impose limitations in ensuring confidentiality and integrity of transmitted messages via CAN, a new technique has emerged among others to approve its reliability in fully authenticating the CAN messages. At the physical layer of the communication system, the method of fingerprinting the messages is implemented to link the received signal to the transmitting electronic control unit (ECU). This paper introduces a new method to implement the security of modern electric vehicles. The lumped element model is used to characterize the channel-specific step response. ECU and channel imperfections lead to a unique transfer function for each transmitter. Due to the unique transfer function, the step response for each transmitter is unique. In this paper, we use control system parameters as a feature-set, afterward, a neural network is used transmitting node identification for message authentication. A dataset collected from a CAN network with eight-channel lengths and eight ECUs to evaluate the performance of the suggested method. Detection results show that the proposed method achieves an accuracy of 97.4% of transmitter detection.
2020-05-04
de Sá, Alan Oliveira, Carmo, Luiz Fernando Rust da C., Santos Machado, Raphael C..  2019.  Countermeasure for Identification of Controlled Data Injection Attacks in Networked Control Systems. 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0 IoT). :455–459.
Networked Control Systems (NCS) are widely used in Industry 4.0 to obtain better management and operational capabilities, as well as to reduce costs. However, despite the benefits provided by NCSs, the integration of communication networks with physical plants can also expose these systems to cyber threats. This work proposes a link monitoring strategy to identify linear time-invariant transfer functions performed by a Man-in-the-Middle during controlled data injection attacks in NCSs. The results demonstrate that the proposed identification scheme provides adequate accuracy when estimating the attack function, and does not interfere in the plant behavior when the system is not under attack.
2018-09-28
Pavlenko, V., Speranskyy, V..  2017.  Polyharmonic test signals application for identification of nonlinear dynamical systems based on volterra model. 2017 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo). :1–5.

The new criterion for selecting the frequencies of the test polyharmonic signals is developed. It allows uniquely filtering the values of multidimensional transfer functions - Fourier-images of Volterra kernel from the partial component of the response of a nonlinear system. It is shown that this criterion significantly weakens the known limitations on the choice of frequencies and, as a result, reduces the number of interpolations during the restoration of the transfer function, and, the more significant, the higher the order of estimated transfer function.

Helwa, M. K., Schoellig, A. P..  2017.  Multi-robot transfer learning: A dynamical system perspective. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :4702–4708.

Multi-robot transfer learning allows a robot to use data generated by a second, similar robot to improve its own behavior. The potential advantages are reducing the time of training and the unavoidable risks that exist during the training phase. Transfer learning algorithms aim to find an optimal transfer map between different robots. In this paper, we investigate, through a theoretical study of single-input single-output (SISO) systems, the properties of such optimal transfer maps. We first show that the optimal transfer learning map is, in general, a dynamic system. The main contribution of the paper is to provide an algorithm for determining the properties of this optimal dynamic map including its order and regressors (i.e., the variables it depends on). The proposed algorithm does not require detailed knowledge of the robots' dynamics, but relies on basic system properties easily obtainable through simple experimental tests. We validate the proposed algorithm experimentally through an example of transfer learning between two different quadrotor platforms. Experimental results show that an optimal dynamic map, with correct properties obtained from our proposed algorithm, achieves 60-70% reduction of transfer learning error compared to the cases when the data is directly transferred or transferred using an optimal static map.

2017-03-08
Yan, Y., Bao, W., Zhang, H., Liu, B., Xin, L..  2015.  Study of the disturbance propagation in the discrete model of power networks. 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT). :2436–2441.

The study of the characteristics of disturbance propagation in the interconnected power networks is of great importance to control the spreading of disturbance and improve the security level of power systems. In this paper, the characteristics of disturbance propagation in a one-dimensional chained power network are studied from the electromechanical wave point of view. The electromechanical wave equation is built based on the discrete inertia model of power networks. The wave transfer function which can describe the variations of amplitude and the phase is derived. Then, the propagation characteristics of different frequency disturbances are analyzed. The corner frequency of the discrete inertia model is proposed. Furthermore, the frequency dispersion and local oscillation are considered and their relationships with the corner frequency are revealed as well. Computer simulations for a 50 generators chained network are carried out to verify the propagation characteristics of disturbances with different frequencies.