Visible to the public Biblio

Filters: Keyword is Control applications  [Clear All Filters]
2017-04-03
Mahfouzi, Rouhollah, Aminifar, Amir, Eles, Petru, Peng, Zebo, Villani, Mattias.  2016.  Intrusion-Damage Assessment and Mitigation in Cyber-Physical Systems for Control Applications. Proceedings of the 24th International Conference on Real-Time Networks and Systems. :141–150.

With cyber-physical systems opening to the outside world, security can no longer be considered a secondary issue. One of the key aspects in security of cyber-phyiscal systems is to deal with intrusions. In this paper, we highlight the several unique properties of control applications in cyber-physical systems. Using these unique properties, we propose a systematic intrusion-damage assessment and mitigation mechanism for the class of observable and controllable attacks. On the one hand, in cyber-physical systems, the plants follow certain laws of physics and this can be utilized to address the intrusion-damage assessment problem. That is, the states of the controlled plant should follow those expected according to the physics of the system and any major discrepancy is potentially an indication of intrusion. Here, we use a machine learning algorithm to capture the normal behavior of the system according to its dynamics. On the other hand, the control performance strongly depends on the amount of allocated resources and this can be used to address the intrusion-damage mitigation problem. That is, the intrusion-damage mitigation is based on the idea of allocating more resources to the control application under attack. This is done using a feedback-based approach including a convex optimization.

2015-05-06
Djouadi, S.M., Melin, A.M., Ferragut, E.M., Laska, J.A., Jin Dong.  2014.  Finite energy and bounded attacks on control system sensor signals. American Control Conference (ACC), 2014. :1716-1722.

Control system networks are increasingly being connected to enterprise level networks. These connections leave critical industrial controls systems vulnerable to cyber-attacks. Most of the effort in protecting these cyber-physical systems (CPS) from attacks has been in securing the networks using information security techniques. Effort has also been applied to increasing the protection and reliability of the control system against random hardware and software failures. However, the inability of information security techniques to protect against all intrusions means that the control system must be resilient to various signal attacks for which new analysis methods need to be developed. In this paper, sensor signal attacks are analyzed for observer-based controlled systems. The threat surface for sensor signal attacks is subdivided into denial of service, finite energy, and bounded attacks. In particular, the error signals between states of attack free systems and systems subject to these attacks are quantified. Optimal sensor and actuator signal attacks for the finite and infinite horizon linear quadratic (LQ) control in terms of maximizing the corresponding cost functions are computed. The closed-loop systems under optimal signal attacks are provided. Finally, an illustrative numerical example using a power generation network is provided together with distributed LQ controllers.

2015-04-30
Djouadi, S.M., Melin, A.M., Ferragut, E.M., Laska, J.A., Jin Dong.  2014.  Finite energy and bounded attacks on control system sensor signals. American Control Conference (ACC), 2014. :1716-1722.

Control system networks are increasingly being connected to enterprise level networks. These connections leave critical industrial controls systems vulnerable to cyber-attacks. Most of the effort in protecting these cyber-physical systems (CPS) from attacks has been in securing the networks using information security techniques. Effort has also been applied to increasing the protection and reliability of the control system against random hardware and software failures. However, the inability of information security techniques to protect against all intrusions means that the control system must be resilient to various signal attacks for which new analysis methods need to be developed. In this paper, sensor signal attacks are analyzed for observer-based controlled systems. The threat surface for sensor signal attacks is subdivided into denial of service, finite energy, and bounded attacks. In particular, the error signals between states of attack free systems and systems subject to these attacks are quantified. Optimal sensor and actuator signal attacks for the finite and infinite horizon linear quadratic (LQ) control in terms of maximizing the corresponding cost functions are computed. The closed-loop systems under optimal signal attacks are provided. Finally, an illustrative numerical example using a power generation network is provided together with distributed LQ controllers.