Visible to the public Biblio

Filters: Keyword is electric sensing devices  [Clear All Filters]
2020-04-24
Bellec, Q., le Claire, J.C., Benkhoris, M.F., Coulibaly, P..  2019.  Investigation of time delay effects on the current in a power converter regulated by Phase-Shift Self-Oscillating Current Controller. 2019 21st European Conference on Power Electronics and Applications (EPE '19 ECCE Europe). :P.1–P.10.

This paper deals with effects of current sensor bandwidth and time delays in a system controlled by a Phase-Shift Self-Oscillating Current Controller (PSSOCC). The robustness of this current controller has been proved in former works showing its good performances in a large range of applications including AC/DC and DC/AC converters, power factor correction, active filters, isolation amplifiers and motor control. As switching frequencies can be upper than 30kHz, time delays and bandwidth limitations cannot be neglected in comparison with former works on this robust current controller. Thus, several models are proposed in this paper to analyze system behaviours. Those models permit to find analytical expressions binding maximum oscillation frequency with time delay and/or additional filter parameters. Through current spectrums analysis, quality of analytical expressions is proved for each model presented in this work. An experimental approach shows that every element of the electronic board having a low-pass effect or delaying command signals need to be included in the model in order to have a perfect match between calculations, simulations and practical results.

2015-04-30
Manandhar, K., Xiaojun Cao, Fei Hu, Yao Liu.  2014.  Combating False Data Injection Attacks in Smart Grid using Kalman Filter. Computing, Networking and Communications (ICNC), 2014 International Conference on. :16-20.


The security of Smart Grid, being one of the very important aspects of the Smart Grid system, is studied in this paper. We first discuss different pitfalls in the security of the Smart Grid system considering the communication infrastructure among the sensors, actuators, and control systems. Following that, we derive a mathematical model of the system and propose a robust security framework for power grid. To effectively estimate the variables of a wide range of state processes in the model, we adopt Kalman Filter in the framework. The Kalman Filter estimates and system readings are then fed into the χ2-square detectors and the proposed Euclidean detectors, which can detect various attacks and faults in the power system including False Data Injection Attacks. The χ2-detector is a proven-effective exploratory method used with Kalman Filter for the measurement of the relationship between dependent variables and a series of predictor variables. The χ2-detector can detect system faults/attacks such as replay and DoS attacks. However, the study shows that the χ2-detector detectors are unable to detect statistically derived False Data Injection Attacks while the Euclidean distance metrics can identify such sophisticated injection attacks.