Biblio
The Software Defined Network (SDN) provides higher programmable functionality for network configuration and management dynamically. Moreover, SDN introduces a centralized management approach by dividing the network into control and data planes. In this paper, we introduce a deep learning enabled intrusion detection and prevention system (DL-IDPS) to prevent secure shell (SSH) brute-force attacks and distributed denial-of-service (DDoS) attacks in SDN. The packet length in SDN switch has been collected as a sequence for deep learning models to identify anomalous and malicious packets. Four deep learning models, including Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) and Stacked Auto-encoder (SAE), are implemented and compared for the proposed DL-IDPS. The experimental results show that the proposed MLP based DL-IDPS has the highest accuracy which can achieve nearly 99% and 100% accuracy to prevent SSH Brute-force and DDoS attacks, respectively.
Network Intrusion Detection System (NIDS) can help administrators of a server in detecting attacks by analyzing packet data traffic on the network in real-time. If an attack occurs, an alert to the administrator is provided by NIDS so that the attack can be known and responded immediately. On the other hand, the alerts cannot be monitored by administrators all the time. Therefore, a system that automatically sends notifications to administrators in real-time by utilizing social media platforms is needed. This paper provides an analysis of the notification system built using Snort as NIDS with WhatsApp and Telegram as a notification platform. There are three types of attacks that are simulated and must be detected by Snort, which are Ping of Death attacks, SYN flood attacks, and SSH brute force attacks. The results obtained indicate that the system successfully provided notification in the form of attack time, IP source of the attack, source of attack port and type of attack in real-time.
Man in the middle Attack (MIMA) problem of Diffie-Hellman key exchange (D-H) protocol, has led to introduce the Hash Diffie-Hellman key exchange (H-D-H) protocol. Which was cracked by applying the brute force attack (BFA) results of hash function. For this paper, a system will be suggested that focusses on an improved key exchange (D-H) protocol, and distributed transform encoder (DTE). That system utilized for enhanced (D-H) protocol algorithm when (D-H) is applied for generating the keys used for encrypting data of long messages. Hash256, with two secret keys and one public key are used for D-H protocol improvements. Finally, DTE where applied, this cryptosystem led to increase the efficiency of data transfer security with strengthening the shared secret key code. Also, it has removed the important problems such as MITM and BFA, as compared to the previous work.
Modern security protocols may involve humans in order to compare or copy short strings between different devices. Multi-factor authentication protocols, such as Google 2-factor or 3D-secure are typical examples of such protocols. However, such short strings may be subject to brute force attacks. In this paper we propose a symbolic model which includes attacker capabilities for both guessing short strings, and producing collisions when short strings result from an application of weak hash functions. We propose a new decision procedure for analysing (a bounded number of sessions of) protocols that rely on short strings. The procedure has been integrated in the AKISS tool and tested on protocols from the ISO/IEC 9798-6:2010 standard.
This study focuses on the spatial context of hacking to networks of Honey-pots. We investigate the relationship between topological positions and geographic positions of victimized computers and system trespassers. We've deployed research Honeypots on the computer networks of two academic institutions, collected information on successful brute force attacks (BFA) and system trespassing events (sessions), and used Social Network Analysis (SNA) techniques, to depict and understand the correlation between spatial attributes (IP addresses) and hacking networks' topology. We mapped and explored hacking patterns and found that geography might set the behavior of the attackers as well as the topology of hacking networks. The contribution of this study stems from the fact that there are no prior studies of geographical influences on the topology of hacking networks and from the unique usage of SNA to investigate hacking activities. Looking ahead, our study can assist policymakers in forming effective policies in the field of cybercrime.
We propose a high efficiency Early-Complete Brute Force Elimination method that speeds up the analysis flow of the Camouflage Integrated Circuit (IC). The proposed method is targeted for security qualification of the Camouflaged IC netlists in Intellectual Property (IP) protection. There are two main features in the proposed method. First, the proposed method features immediate elimination of the incorrect Camouflage gates combination for the rest of computation, concentrating the resources into other potential correct Camouflage gates combination. Second, the proposed method features early complete, i.e. revealing the correct Camouflage gates once all incorrect gates combination are eliminated, increasing the computation speed for the overall security analysis. Based on the Python programming platform, we implement the algorithm of the proposed method and test it for three circuits including ISCAS’89 benchmarks. From the simulation results, our proposed method, on average, features 71% lesser number of trials and 79% shorter run time as compared to the conventional method in revealing the correct Camouflage gates from the Camouflaged IC netlist.
A parallel brute force attack on RC4 algorithm based on FPGA (Field Programmable Gate Array) with an efficient style has been presented. The main idea of this design is to use number of forecast keying methods to reduce the overall clock pulses required depended to key searching operation by utilizes on-chip BRAMs (block RAMs) of FPGA for maximizing the total number of key searching unit with taking into account the highest clock rate. Depending on scheme, 32 key searching units and main controller will be used in one Xilinx XC3S1600E-4 FPGA device, all these units working in parallel and each unit will be searching in a specific range of keys, by comparing the current result with the well-known cipher text if its match the found flag signal will change from 0 to 1 and the main controller will receive this signal and stop the searching operation. This scheme operating at 128-MHz clock frequency and gives us key searching speed of 7.7 × 106 keys/sec. Testing all possible keys (40-bits length), requires only around 39.5h.
Along with the development of the Windows operating system, browser applications to surf the internet are also growing rapidly. The most widely used browsers today are Google Chrome and Mozilla Firefox. Both browsers have a username and password management feature that makes users login to a website easily, but saving usernames and passwords in the browser is quite dangerous because the stored data can be hacked using brute force attacks or read through a program. One way to get a username and password in the browser is to use a program that can read Google Chrome and Mozilla Firefox login data from the computer's internal storage and then show those data. In this study, an attack will be carried out by implementing Rubber Ducky using BadUSB to run the ChromePass and PasswordFox program and the PowerShell script using the Arduino Pro Micro Leonardo device as a USB Password Stealer. The results obtained from this study are the username and password on Google Chrome and Mozilla Firefox successfully obtained when the USB is connected to the target device, the average time of the attack is 14 seconds then sending it to the author's email.
Traditional address scanning attacks mainly rely on the naive 'brute forcing' approach, where the entire IPv4 address space is exhaustively searched by enumerating different possibilities. However, such an approach is inefficient for IPv6 due to its vast subnet size (i.e., 264). As a result, it is widely assumed that address scanning attacks are less feasible in IPv6 networks. In this paper, we evaluate new IPv6 reconnaissance techniques in real IPv6 networks and expose how to leverage the Domain Name System (DNS) for IPv6 network reconnaissance. We collected IPv6 addresses from 5 regions and 100,000 domains by exploiting DNS reverse zone and DNSSEC records. We propose a DNS Guard (DNSG) to efficiently detect DNS reconnaissance attacks in IPv6 networks. DNSG is a plug and play component that could be added to the existing infrastructure. We implement DNSG using Bro and Suricata. Our results demonstrate that DNSG could effectively block DNS reconnaissance attacks.
Due to improving computational capacity of supercomputers, transmitting encrypted packets via one single network path is vulnerable to brute-force attacks. The versatile attackers secretly eavesdrop all the packets, classify packets into different streams, performs an exhaustive search for the decryption key, and extract sensitive personal information from the streams. However, new Internet Protocol (IP) brings great opportunities and challenges for preventing eavesdropping attacks. In this paper, we propose a Programming Protocol-independent Packet Processors (P4) based Network Immune Scheme (P4NIS) against the eavesdropping attacks. Specifically, P4NIS is equipped with three lines of defense to improve the network immunity. The first line is promiscuous forwarding by splitting all the traffic packets in different network paths disorderly. Complementally, the second line encrypts transmission port fields of the packets using diverse encryption algorithms. The encryption could distribute traffic packets from one stream into different streams, and disturb eavesdroppers to classify them correctly. Besides, P4NIS inherits the advantages from the existing encryption-based countermeasures which is the third line of defense. Using a paradigm of programmable data planes-P4, we implement P4NIS and evaluate its performances. Experimental results show that P4NIS can increase difficulties of eavesdropping significantly, and increase transmission throughput by 31.7% compared with state-of-the-art mechanisms.