Visible to the public Biblio

Filters: Keyword is security solution  [Clear All Filters]
2023-01-13
Onoja, Daniel, Hitchens, Michael, Shankaran, Rajan.  2022.  Security Policy to Manage Responses to DDoS Attacks on 5G IoT Enabled Devices. 2022 13th International Conference on Information and Communication Systems (ICICS). :30–35.
In recent years, the need for seamless connectivity has increased across various network platforms with demands coming from industries, home, mobile, transportation and office networks. The 5th generation (5G) network is being deployed to meet such demand of high-speed seamless network device connections. The seamless connectivity 5G provides could be a security threat allowing attacks such as distributed denial of service (DDoS) because attackers might have easy access into the network infrastructure and higher bandwidth to enhance the effects of the attack. The aim of this research is to provide a security solution for 5G technology to DDoS attacks by managing the response to threats posed by DDoS. Deploying a security policy language which is reactive and event-oriented fits into a flexible, efficient, and lightweight security approach. A policy in our language consists of an event whose occurrence triggers a policy rule where one or more actions are taken.
2020-08-28
Chukry, Souheil, Sbeyti, Hassan.  2019.  Security Enhancement in Storage Area Network. 2019 7th International Symposium on Digital Forensics and Security (ISDFS). :1—5.

Living in the age of digital transformation, companies and individuals are moving to public and private clouds to store and retrieve information, hence the need to store and retrieve data is exponentially increasing. Existing storage technologies such as DAS are facing a big challenge to deal with these huge amount of data. Hence, newer technologies should be adopted. Storage Area Network (SAN) is a distributed storage technology that aggregates data from several private nodes into a centralized secure place. Looking at SAN from a security perspective, clearly physical security over multiple geographical remote locations is not adequate to ensure a full security solution. A SAN security framework needs to be developed and designed. This work investigates how SAN protocols work (FC, ISCSI, FCOE). It also investigates about other storages technologies such as Network Attached Storage (NAS) and Direct Attached Storage (DAS) including different metrics such as: IOPS (input output per second), Throughput, Bandwidths, latency, cashing technologies. This research work is focusing on the security vulnerabilities in SAN listing different attacks in SAN protocols and compare it to other such as NAS and DAS. Another aspect of this work is to highlight performance factors in SAN in order to find a way to improve the performance focusing security solutions aimed to enhance the security level in SAN.

2020-01-07
Hammami, Hamza, Brahmi, Hanen, Ben Yahia, Sadok.  2018.  Secured Outsourcing towards a Cloud Computing Environment Based on DNA Cryptography. 2018 International Conference on Information Networking (ICOIN). :31-36.

Cloud computing denotes an IT infrastructure where data and software are stored and processed remotely in a data center of a cloud provider, which are accessible via an Internet service. This new paradigm is increasingly reaching the ears of companies and has revolutionized the marketplace of today owing to several factors, in particular its cost-effective architectures covering transmission, storage and intensive data computing. However, like any new technology, the cloud computing technology brings new problems of security, which represents the main restrain on turning to this paradigm. For this reason, users are reluctant to resort to the cloud because of security and protection of private data as well as lack of trust in cloud service providers. The work in this paper allows the readers to familiarize themselves with the field of security in the cloud computing paradigm while suggesting our contribution in this context. The security schema we propose allowing a distant user to ensure a completely secure migration of all their data anywhere in the cloud through DNA cryptography. Carried out experiments showed that our security solution outperforms its competitors in terms of integrity and confidentiality of data.

2019-09-09
Almohaimeed, A., Asaduzzaman, A..  2019.  A Novel Moving Target Defense Technique to Secure Communication Links in Software-Defined Networks. 2019 Fifth Conference on Mobile and Secure Services (MobiSecServ). :1–4.
Software-defined networking (SDN) is a recently developed approach to computer networking that brings a centralized orientation to network control, thereby improving network architecture and management. However, as with any communication environment that involves message transmission among users, SDN is confronted by the ongoing challenge of protecting user privacy. In this “Work in Progress (WIP)” research, we propose an SDN security model that applies the moving target defense (MTD) technique to protect communication links from sensitive data leakages. MTD is a security solution aimed at increasing complexity and uncertainty for attackers by concealing sensitive information that may serve as a gateway from which to launch different types of attacks. The proposed MTD-based security model is intended to protect user identities contained in transmitted messages in a way that prevents network intruders from identifying the real identities of senders and receivers. According to the results from preliminary experiments, the proposed MTD model has potential to protect the identities contained in transmitted messages within communication links. This work will be extended to protect sensitive data if an attacker gets access to the network device.
2017-03-08
Yasrebi, P., Monfared, S., Bannazadeh, H., Leon-Garcia, A..  2015.  Security function virtualization in software defined infrastructure. 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM). :778–781.

In this paper we present an approach to implement security as a Virtualized Network Function (VNF) that is implemented within a Software-Defined Infrastructure (SDI). We present a scalable, flexible, and seamless design for a Deep Packet Inspection (DPI) system for network intrusion detection and prevention. We discuss how our design introduces significant reductions in both capital and operational expenses (CAPEX and OPEX). As proof of concept, we describe an implementation for a modular security solution that uses the SAVI SDI testbed to first detect and then block an attack or to re-direct it to a honey-pot for further analysis. We discuss our testing methodology and provide measurement results for the test cases where an application faces various security attacks.