Biblio
Living in the age of digital transformation, companies and individuals are moving to public and private clouds to store and retrieve information, hence the need to store and retrieve data is exponentially increasing. Existing storage technologies such as DAS are facing a big challenge to deal with these huge amount of data. Hence, newer technologies should be adopted. Storage Area Network (SAN) is a distributed storage technology that aggregates data from several private nodes into a centralized secure place. Looking at SAN from a security perspective, clearly physical security over multiple geographical remote locations is not adequate to ensure a full security solution. A SAN security framework needs to be developed and designed. This work investigates how SAN protocols work (FC, ISCSI, FCOE). It also investigates about other storages technologies such as Network Attached Storage (NAS) and Direct Attached Storage (DAS) including different metrics such as: IOPS (input output per second), Throughput, Bandwidths, latency, cashing technologies. This research work is focusing on the security vulnerabilities in SAN listing different attacks in SAN protocols and compare it to other such as NAS and DAS. Another aspect of this work is to highlight performance factors in SAN in order to find a way to improve the performance focusing security solutions aimed to enhance the security level in SAN.
Cloud computing denotes an IT infrastructure where data and software are stored and processed remotely in a data center of a cloud provider, which are accessible via an Internet service. This new paradigm is increasingly reaching the ears of companies and has revolutionized the marketplace of today owing to several factors, in particular its cost-effective architectures covering transmission, storage and intensive data computing. However, like any new technology, the cloud computing technology brings new problems of security, which represents the main restrain on turning to this paradigm. For this reason, users are reluctant to resort to the cloud because of security and protection of private data as well as lack of trust in cloud service providers. The work in this paper allows the readers to familiarize themselves with the field of security in the cloud computing paradigm while suggesting our contribution in this context. The security schema we propose allowing a distant user to ensure a completely secure migration of all their data anywhere in the cloud through DNA cryptography. Carried out experiments showed that our security solution outperforms its competitors in terms of integrity and confidentiality of data.
In this paper we present an approach to implement security as a Virtualized Network Function (VNF) that is implemented within a Software-Defined Infrastructure (SDI). We present a scalable, flexible, and seamless design for a Deep Packet Inspection (DPI) system for network intrusion detection and prevention. We discuss how our design introduces significant reductions in both capital and operational expenses (CAPEX and OPEX). As proof of concept, we describe an implementation for a modular security solution that uses the SAVI SDI testbed to first detect and then block an attack or to re-direct it to a honey-pot for further analysis. We discuss our testing methodology and provide measurement results for the test cases where an application faces various security attacks.