Visible to the public Biblio

Filters: Keyword is false data injection attack detection  [Clear All Filters]
2021-02-16
Siu, J. Y., Panda, S. Kumar.  2020.  A Specification-Based Detection for Attacks in the Multi-Area System. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. :1526—1526.
In the past decade, cyber-attack events on the power grid have proven to be sophisticated and advanced. These attacks led to severe consequences on the grid operation, such as equipment damage or power outages. Hence, it is more critical than ever to develop tools for security assessment and detection of anomalies in the cyber-physical grid. For an extensive power grid, it is complex to analyze the causes of frequency deviations. Besides, if the system is compromised, attackers can leverage on the frequency deviation to bypass existing protection measures of the grid. This paper aims to develop a novel specification-based method to detect False Data Injection Attacks (FDIAs) in the multi-area system. Firstly, we describe the implementation of a three-area system model. Next, we assess the risk and devise several intrusion scenarios. Specifically, we inject false data into the frequency measurement and Automatic Generation Control (AGC) signals. We then develop a rule-based method to detect anomalies at the system-level. Our simulation results proves that the proposed algorithm can detect FDIAs in the system.
2020-08-03
Nakayama, Kiyoshi, Muralidhar, Nikhil, Jin, Chenrui, Sharma, Ratnesh.  2019.  Detection of False Data Injection Attacks in Cyber-Physical Systems using Dynamic Invariants. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). :1023–1030.

Modern cyber-physical systems are increasingly complex and vulnerable to attacks like false data injection aimed at destabilizing and confusing the systems. We develop and evaluate an attack-detection framework aimed at learning a dynamic invariant network, data-driven temporal causal relationships between components of cyber-physical systems. We evaluate the relative performance in attack detection of the proposed model relative to traditional anomaly detection approaches. In this paper, we introduce Granger Causality based Kalman Filter with Adaptive Robust Thresholding (G-KART) as a framework for anomaly detection based on data-driven functional relationships between components in cyber-physical systems. In particular, we select power systems as a critical infrastructure with complex cyber-physical systems whose protection is an essential facet of national security. The system presented is capable of learning with or without network topology the task of detection of false data injection attacks in power systems. Kalman filters are used to learn and update the dynamic state of each component in the power system and in-turn monitor the component for malicious activity. The ego network for each node in the invariant graph is treated as an ensemble model of Kalman filters, each of which captures a subset of the node's interactions with other parts of the network. We finally also introduce an alerting mechanism to surface alerts about compromised nodes.

2015-04-30
Manandhar, K., Xiaojun Cao, Fei Hu, Yao Liu.  2014.  Combating False Data Injection Attacks in Smart Grid using Kalman Filter. Computing, Networking and Communications (ICNC), 2014 International Conference on. :16-20.


The security of Smart Grid, being one of the very important aspects of the Smart Grid system, is studied in this paper. We first discuss different pitfalls in the security of the Smart Grid system considering the communication infrastructure among the sensors, actuators, and control systems. Following that, we derive a mathematical model of the system and propose a robust security framework for power grid. To effectively estimate the variables of a wide range of state processes in the model, we adopt Kalman Filter in the framework. The Kalman Filter estimates and system readings are then fed into the χ2-square detectors and the proposed Euclidean detectors, which can detect various attacks and faults in the power system including False Data Injection Attacks. The χ2-detector is a proven-effective exploratory method used with Kalman Filter for the measurement of the relationship between dependent variables and a series of predictor variables. The χ2-detector can detect system faults/attacks such as replay and DoS attacks. However, the study shows that the χ2-detector detectors are unable to detect statistically derived False Data Injection Attacks while the Euclidean distance metrics can identify such sophisticated injection attacks.