Visible to the public Biblio

Filters: Keyword is adaptive algorithm  [Clear All Filters]
2021-02-08
Qiao, B., Jin, L., Yang, Y..  2016.  An Adaptive Algorithm for Grey Image Edge Detection Based on Grey Correlation Analysis. 2016 12th International Conference on Computational Intelligence and Security (CIS). :470—474.

In the original algorithm for grey correlation analysis, the detected edge is comparatively rough and the thresholds need determining in advance. Thus, an adaptive edge detection method based on grey correlation analysis is proposed, in which the basic principle of the original algorithm for grey correlation analysis is used to get adaptively automatic threshold according to the mean value of the 3×3 area pixels around the detecting pixel and the property of people's vision. Because the false edge that the proposed algorithm detected is relatively large, the proposed algorithm is enhanced by dealing with the eight neighboring pixels around the edge pixel, which is merged to get the final edge map. The experimental results show that the algorithm can get more complete edge map with better continuity by comparing with the traditional edge detection algorithms.

2017-03-08
Pisani, P. H., Lorena, A. C., Carvalho, A. C. P. L. F. d.  2015.  Ensemble of Adaptive Algorithms for Keystroke Dynamics. 2015 Brazilian Conference on Intelligent Systems (BRACIS). :310–315.

Biometric systems have been applied to improve the security of several computational systems. These systems analyse physiological or behavioural features obtained from the users in order to perform authentication. Biometric features should ideally meet a number of requirements, including permanence. In biometrics, permanence means that the analysed biometric feature will not change over time. However, recent studies have shown that this is not the case for several biometric modalities. Adaptive biometric systems deal with this issue by adapting the user model over time. Some algorithms for adaptive biometrics have been investigated and compared in the literature. In machine learning, several studies show that the combination of individual techniques in ensembles may lead to more accurate and stable decision models. This paper investigates the usage of some ensemble approaches to combine the output of current adaptive algorithms for biometrics. The experiments are carried out on keystroke dynamics, a biometric modality known to be subject to change over time.