Visible to the public Biblio

Filters: Keyword is data streams  [Clear All Filters]
2022-12-09
Al-Falouji, Ghassan, Gruhl, Christian, Neumann, Torben, Tomforde, Sven.  2022.  A Heuristic for an Online Applicability of Anomaly Detection Techniques. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :107—112.
OHODIN is an online extension for data streams of the kNN-based ODIN anomaly detection approach. It provides a detection-threshold heuristic that is based on extreme value theory. In contrast to sophisticated anomaly and novelty detection approaches the decision-making process of ODIN is interpretable by humans, making it interesting for certain applications. However, it is limited in terms of the underlying detection method. In this article, we present an extension of the OHODIN to further detection techniques to reinforce OHODIN capability of online data streams anomaly detection. We introduce the algorithm modifications and an experimental evaluation with competing state-of-the-art anomaly detection approaches.
2021-02-08
Pelissero, N., Laso, P. M., Puentes, J..  2020.  Naval cyber-physical anomaly propagation analysis based on a quality assessed graph. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–8.
As any other infrastructure relying on cyber-physical systems (CPS), naval CPS are highly interconnected and collect considerable data streams, on which depend multiple command and navigation decisions. Being a data-driven decision system requiring optimized supervisory control on a permanent basis, it is critical to examine the CPS vulnerability to anomalies and their propagation. This paper presents an approach to detect CPS anomalies and estimate their propagation applying a quality assessed graph, which represents the CPS physical and digital subsystems, combined with system variables dependencies and a set of data and information quality measures vectors. Following the identification of variables dependencies and high-risk nodes in the CPS, data and information quality measures reveal how system variables are modified when an anomaly is detected, also indicating its propagation path. Taking as reference the normal state of a naval propulsion management system, four anomalies in the form of cyber-attacks - port scan, programmable logical controller stop, and man in the middle to change the motor speed and operation of a tank valve - were produced. Three anomalies were properly detected and their propagation path identified. These results suggest the feasibility of anomaly detection and estimation of propagation estimation in CPS, applying data and information quality analysis to a system graph.
2020-05-22
Devarakonda, Ranjeet, Giansiracusa, Michael, Kumar, Jitendra.  2018.  Machine Learning and Social Media to Mine and Disseminate Big Scientific Data. 2018 IEEE International Conference on Big Data (Big Data). :5312—5315.

One of the challenges in supplying the communities with wider access to scientific databases is the need for knowledge of database languages like Structured Query Language (SQL). Although the SQL language has been published in many forms, not everybody is able to write SQL queries. Another challenge is that it might not be practical to make the public aware of the structure of databases. There is a need for novice users to query relational databases using their natural language. To solve this problem, many natural language interfaces to structured databases have been developed. The goal is to provide a more intuitive method for generating database queries and delivering responses. Through social media, which makes it possible to interact with a wide section of the population, and with the help of natural language processing, researchers at the Atmospheric Radiation Measurement (ARM) Data Center at Oak Ridge National Laboratory (ORNL) have developed a concept to enable easy search and retrieval of data from several environmental data centers for the scientific community through social media.Using a machine learning framework that maps natural language text to thousands of datasets, instruments, variables, and data streams, the prototype system would allow users to request data through Twitter and receive a link (via tweet) to applicable data results on the project's search catalog tailored to their key words. This automated identification of relevant data from various petascale archives at ORNL could increase convenience, access, and use of the project's data by the broader community. In this paper we discuss how some data-intensive projects at ORNL are using innovative ways to help in data discovery.

2020-02-26
Almohaimeed, Abdulrahman, Asaduzzaman, Abu.  2019.  Incorporating Monitoring Points in SDN to Ensure Trusted Links Against Misbehaving Traffic Flows. 2019 Fifth Conference on Mobile and Secure Services (MobiSecServ). :1–4.

The growing trend toward information technology increases the amount of data travelling over the network links. The problem of detecting anomalies in data streams has increased with the growth of internet connectivity. Software-Defined Networking (SDN) is a new concept of computer networking that can adapt and support these growing trends. However, the centralized nature of the SDN design is challenged by the need for an efficient method for traffic monitoring against traffic anomalies caused by misconfigured devices or ongoing attacks. In this paper, we propose a new model for traffic behavior monitoring that aims to ensure trusted communication links between the network devices. The main objective of this model is to confirm that the behavior of the traffic streams matches the instructions provided by the SDN controller, which can help to increase the trust between the SDN controller and its covered infrastructure components. According to our preliminary implementation, the behavior monitoring unit is able to read all traffic information and perform a validation process that reports any mismatching traffic to the controller.

2020-02-17
Jolfaei, Alireza, Kant, Krishna.  2019.  Privacy and Security of Connected Vehicles in Intelligent Transportation System. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks – Supplemental Volume (DSN-S). :9–10.
The paper considers data security and privacy issues in intelligent transportation systems which involve data streams coming out from individual vehicles to road side units. In this environment, there are issues in regards to the scalability of key management and computation limitations at the edge of the network. To address these issues, we suggest the formation of groups in the vehicular layer, where a group leader is assigned to communicate with group members and the road side unit. We propose a lightweight permutation mechanism for preserving the confidentiality and privacy of sensory data.
2017-03-08
Pisani, P. H., Lorena, A. C., Carvalho, A. C. P. L. F. d.  2015.  Ensemble of Adaptive Algorithms for Keystroke Dynamics. 2015 Brazilian Conference on Intelligent Systems (BRACIS). :310–315.

Biometric systems have been applied to improve the security of several computational systems. These systems analyse physiological or behavioural features obtained from the users in order to perform authentication. Biometric features should ideally meet a number of requirements, including permanence. In biometrics, permanence means that the analysed biometric feature will not change over time. However, recent studies have shown that this is not the case for several biometric modalities. Adaptive biometric systems deal with this issue by adapting the user model over time. Some algorithms for adaptive biometrics have been investigated and compared in the literature. In machine learning, several studies show that the combination of individual techniques in ensembles may lead to more accurate and stable decision models. This paper investigates the usage of some ensemble approaches to combine the output of current adaptive algorithms for biometrics. The experiments are carried out on keystroke dynamics, a biometric modality known to be subject to change over time.