Biblio
Heart rate monitoring has become increasingly popular in the industry through mobile phones and wearable devices. However, current determination of heart rate through mobile applications suffers from high corruption of signals during intensive physical exercise. In this paper, we present a novel technique for accurately determining heart rate during intensive motion by classifying PPG signals obtained from smartphones or wearable devices combined with motion data obtained from accelerometer sensors. Our approach utilizes the Internet of Things (IoT) cloud connectivity of smartphones for selection of PPG signals using deep learning. The technique is validated using the TROIKA dataset and is accurately able to predict heart rate with a 10-fold cross validation error margin of 4.88%.
Smartwatches, with motion sensors, are becoming a common utility for users. With the increasing popularity of practical wearable computers, and in particular smartwatches, the security risks linked with sensors on board these devices have yet to be fully explored. Recent research literature has demonstrated the capability of using a smartphone's own accelerometer and gyroscope to infer tap locations; this paper expands on this work to demonstrate a method for inferring smartphone PINs through the analysis of smartwatch motion sensors. This study determines the feasibility and accuracy of inferring user keystrokes on a smartphone through a smartwatch worn by the user. Specifically, we show that with malware accessing only the smartwatch's motion sensors, it is possible to recognize user activity and specific numeric keypad entries. In a controlled scenario, we achieve results no less than 41% and up to 92% accurate for PIN prediction within 5 guesses.