Visible to the public Biblio

Filters: Keyword is gyroscope  [Clear All Filters]
2020-12-21
Mahmoud, A., Mukherjee, T., Piazza, G..  2020.  Investigating Long-Term Stability of Wide Bandwidth Surface Acoustic Waves Gyroscopes Using a Monolithically Integrated Micro-Oven. 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS). :252–254.
This paper is the first to investigate the long-term stability of Surface Acoustic Wave Gyroscopes (SAWG) using an ovenized control system. Monolithic integration of a MEMS heater adjacent to SAW devices on Lithium Niobate over insulator substrate (LNOI) tightly couples frequency-based temperature detection with heating for temperature and frequency stabilization. This first prototype demonstrates the ability to minimize the temperature variations of the SAWG to below ±10 μK and stabilize the SAWG resonance frequency to ±0.2 ppm. This approach thus eliminates the thermal drift in a SAWG and enables the development of a new generation of MEMS-based gyroscopes with long-term stability.
2017-03-08
Sarkisyan, A., Debbiny, R., Nahapetian, A..  2015.  WristSnoop: Smartphone PINs prediction using smartwatch motion sensors. 2015 IEEE International Workshop on Information Forensics and Security (WIFS). :1–6.

Smartwatches, with motion sensors, are becoming a common utility for users. With the increasing popularity of practical wearable computers, and in particular smartwatches, the security risks linked with sensors on board these devices have yet to be fully explored. Recent research literature has demonstrated the capability of using a smartphone's own accelerometer and gyroscope to infer tap locations; this paper expands on this work to demonstrate a method for inferring smartphone PINs through the analysis of smartwatch motion sensors. This study determines the feasibility and accuracy of inferring user keystrokes on a smartphone through a smartwatch worn by the user. Specifically, we show that with malware accessing only the smartwatch's motion sensors, it is possible to recognize user activity and specific numeric keypad entries. In a controlled scenario, we achieve results no less than 41% and up to 92% accurate for PIN prediction within 5 guesses.